Thermal Conductivity and Elastic Constants of PEDOT:PSS with High Electrical Conductivity

Mixtures of poly(3,4-ethylenedioxythiophene) and polystyrenesulfonate (PEDOT:PSS) have high electrical conductivity when cast from aqueous suspensions in combination with a high boiling-point cosolvent dimethyl sulfoxide (DMSO). The electronic component of the thermal conductivity of these highly conducting polymers is of interest for evaluating their potential for thermoelectric cooling and power generation. We find, using time-domain thermore- flectance measurements of thermal conductivity along multiple directions of thick (>20 μm) drop-cast PEDOT films, that the thermal conductivity can be highly anisotropic (Λ∥ ≈ 1.0 W m −1 K −1 and Λ⊥ ≈ 0.3 W m −1 K −1 for the in-plane and through- plane directions, respectively) when the electrical conductivity in the in-plane direction is large (σ ≈ 500 S cm −1 ). We relate the increase in thermal conductivity to the estimated electronic component of the thermal conductivity using the Wiedemann−Franz law, and find that our data are consistent with conventional Sommerfeld value of the Lorenz number. We use measurements of the elastic constants (C11 ≈ 11 GPa and C44 ≈ 17 GPa) of spin-cast PEDOT films and through-plane thermal conductivity (Λ⊥ ≈ 0.3 W m −1 K −1 ) of drop-cast and spin-cast films to support our assumption that the phonon contribution to the thermal conductivity does not change significantly with DMSO composition.

[1]  P. Stoddart,et al.  Surface Brillouin scattering study of the surface excitations in amorphous silicon layers produced by ion bombardment , 1998 .

[2]  K. Zhang,et al.  Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. , 2013, Nature materials.

[3]  John H Xin,et al.  Modification of Conductive Polymer for Polymeric Anodes of Flexible Organic Light-Emitting Diodes , 2009, Nanoscale research letters.

[4]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[5]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[6]  S. Roth,et al.  Molecular Reorientation and Structural Changes in Cosolvent-Treated Highly Conductive PEDOT:PSS Electrodes for Flexible Indium Tin Oxide-Free Organic Electronics , 2014 .

[7]  N. Mermilliod,et al.  Thermal conductivity and specific heat of pure and iodine doped polyacetylene (CH)x , 1980 .

[8]  Cao Bing-Yang,et al.  Experimental Studies on Thermal and Electrical Properties of Platinum Nanofilms , 2006 .

[9]  Bernard Kippelen,et al.  Indium tin oxide-free and metal-free semitransparent organic solar cells , 2010 .

[10]  J. Gilman,et al.  Nanotechnology , 2001 .

[11]  René A. J. Janssen,et al.  Quasi‐One Dimensional in‐Plane Conductivity in Filamentary Films of PEDOT:PSS , 2013 .

[12]  J. Bowers,et al.  Cross-plane Seebeck coefficient and Lorenz number in superlattices , 2007 .

[13]  M. Salamon,et al.  Thermal conductivity of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) near the metal-insulator transition , 1975 .

[14]  Takao Ishida,et al.  Morphological Change and Mobility Enhancement in PEDOT:PSS by Adding Co‐solvents , 2013, Advanced materials.

[15]  R. Neumann,et al.  The experimental investigation of thermal conductivity and the Wiedemann–Franz law for single metallic nanowires , 2009, Nanotechnology.

[16]  Ronggui Yang,et al.  Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method. , 2013, The Review of scientific instruments.

[17]  D. Cahill,et al.  Generation and detection of gigahertz surface acoustic waves using an elastomeric phase-shift mask , 2013 .

[18]  Mark D. Losego,et al.  Testing the minimum thermal conductivity model for amorphous polymers using high pressure , 2011 .

[19]  Tae-Wook Kim,et al.  Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells , 2009 .

[20]  H. J. Mcskimin Measurement of Elastic Constants at Low Temperatures by Means of Ultrasonic Waves–Data for Silicon and Germanium Single Crystals, and for Fused Silica , 1953 .

[21]  C. Tanford Macromolecules , 1994, Nature.

[22]  Rainer Wesche,et al.  Springer Handbook of Electronic and Photonic Materials , 2017 .

[23]  Mark D. Losego,et al.  Interfacial thermal conductance in spun-cast polymer films and polymer brushes , 2010 .

[24]  R. Franz,et al.  Ueber die Wärme-Leitungsfähigkeit der Metalle , 1853 .

[25]  D. Cahill,et al.  Ultralow thermal conductivity of fullerene derivatives , 2013 .

[26]  Marc J. Assael,et al.  Thermal Conductivity of Polymethyl Methacrylate (PMMA) and Borosilicate Crown Glass BK7 , 2005 .

[27]  D. A. Ditmars,et al.  Aluminum. I. Measurement of the relative enthalpy from 273 to 929 K and derivation of thermodynamic functions for Al(s) from 0 K to Its melting point , 1985 .

[28]  David G. Cahill,et al.  Thermal conductivity of isotopically pure and Ge-doped Si epitaxial layers from 300 to 550 K , 2004 .

[29]  Gang Chen,et al.  Applied Physics Reviews Nanoscale Thermal Transport. Ii. 2003–2012 , 2022 .

[30]  Walter Montenarie,et al.  Springer Science and Business Media , 2004 .

[31]  D. Cahill,et al.  Thermal Conductivity of High-Modulus Polymer Fibers , 2013 .

[32]  Kurt Hingerl,et al.  Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives☆ , 2013, Thin solid films.

[33]  E. H. Bogardus Third‐Order Elastic Constants of Ge, MgO, and Fused SiO2 , 1965 .

[34]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[35]  D. Cahill,et al.  Invited article: micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance. , 2013, The Review of scientific instruments.

[36]  Linda S. Schadler,et al.  High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces , 2003 .

[37]  R. Opila,et al.  Promising thermoelectric properties of commercial PEDOT:PSS materials and their bi2Te3 powder composites. , 2010, ACS applied materials & interfaces.

[38]  Mark S. Lundstrom,et al.  On the Best Bandstructure for Thermoelectric Performance , 2011, 1103.1274.

[39]  Qingshuo Wei,et al.  Experimental Studies on the Anisotropic Thermoelectric Properties of Conducting Polymer Films. , 2014, ACS macro letters.

[40]  P. Wang,et al.  Effect of molecular weight of additives on the conductivity of PEDOT: PSS and efficiency for ITO-free organic solar cells , 2013 .

[41]  C. Kittel Introduction to solid state physics , 1954 .

[42]  Peter Andersson,et al.  The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)−Poly(styrenesulfonate) (PEDOT−PSS) Plastic Electrodes , 2006 .