A DFT study of methanol synthesis from CO2 hydrogenation on Cu/ZnO catalyst

[1]  Xianhua Wu,et al.  A review of the theoretical research and practical progress of carbon neutrality , 2021, Sustainable Operations and Computers.

[2]  Chen Zhao,et al.  Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study , 2021 .

[3]  H. Dipojono,et al.  Density functional and microkinetic study of CO2 hydrogenation to methanol on subnanometer Pd cluster doped by transition metal (M= Cu, Ni, Pt, Rh) , 2021 .

[4]  A. Comas‐Vives,et al.  Shape and Surface Morphology of Copper Nanoparticles under CO2 Hydrogenation Conditions from First Principles , 2020, The Journal of Physical Chemistry C.

[5]  Minhua Zhang,et al.  A DFT study for CO2 hydrogenation on W(111) and Ni-doped W(111) surfaces. , 2020, Physical chemistry chemical physics : PCCP.

[6]  T. Foken,et al.  Surface-Energy-Balance Closure over Land: A Review , 2020, Boundary-Layer Meteorology.

[7]  R. Schlögl,et al.  The Mechanism of Interfacial CO2 Activation on Al Doped Cu/ZnO , 2020 .

[8]  L. Piccolo Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis , 2020 .

[9]  Q. Fu,et al.  CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction , 2020, Journal of Energy Chemistry.

[10]  K. D. de Jong,et al.  Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity , 2019, Nature Catalysis.

[11]  Justin M. Notestein,et al.  Role of surface reconstruction on Cu/TiO2 nanotubes for CO2 conversion , 2019, Applied Catalysis B: Environmental.

[12]  T. Fang,et al.  Mechanistic study of methanol synthesis from CO2 hydrogenation on Rh-doped Cu(111) surfaces , 2019, Molecular Catalysis.

[13]  Hongxia Wang,et al.  Boosting the cycling stability of transition metal compounds-based supercapacitors , 2019, Energy Storage Materials.

[14]  H. Freund,et al.  Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems. , 2018, Chemical Society reviews.

[15]  Lili Lin,et al.  In Situ Characterization of Cu/CeO2 Nanocatalysts for CO2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity , 2018, The Journal of Physical Chemistry C.

[16]  Ling Guo,et al.  DFT comparison of the performance of bare Cu and Cu-alloyed Co single-atom catalyst for CO2 synthesizing of methanol , 2018, Theoretical Chemistry Accounts.

[17]  J. Klemeš,et al.  Mechanisms and kinetics of CO2 hydrogenation to value-added products: A detailed review on current status and future trends , 2017 .

[18]  Hailong Liu,et al.  A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol , 2017, Science Advances.

[19]  F. Kapteijn,et al.  Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes , 2017, Chemical reviews.

[20]  Ping Liu,et al.  Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts , 2017, Science.

[21]  Thongthai Witoon,et al.  CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases , 2016 .

[22]  Byung‐Kook Kim,et al.  Density Functional Theory Study for Catalytic Activation and Dissociation of CO2 on Bimetallic Alloy Surfaces , 2016 .

[23]  Hong Lei,et al.  Hydrogenation of CO2 to CH3OH over Cu/ZnO catalysts with different ZnO morphology , 2015 .

[24]  R. Schlögl,et al.  Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not? , 2015 .

[25]  R. Schlögl,et al.  Promoting Strong Metal Support Interaction: Doping ZnO for Enhanced Activity of Cu/ZnO:M (M = Al, Ga, Mg) Catalysts , 2015 .

[26]  Robert Schlögl,et al.  The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu‐Based Catalysts , 2015 .

[27]  Xiaoming Guo,et al.  Highly selective hydrogenation of CO2 to methanol over CuO–ZnO–ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method , 2015 .

[28]  R. Schlögl,et al.  Synthesis and Characterisation of a Highly Active Cu/ZnO:Al Catalyst , 2014 .

[29]  Ping Liu,et al.  Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2 , 2014, Science.

[30]  Richard G. Hennig,et al.  Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper , 2013 .

[31]  R. Schlögl,et al.  Performance improvement of nanocatalysts by promoter-induced defects in the support material: methanol synthesis over Cu/ZnO:Al. , 2013, Journal of the American Chemical Society.

[32]  Jonathan W. Lekse,et al.  Active Sites and Structure−Activity Relationships of Copper-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol , 2012 .

[33]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[34]  J. Rossmeisl,et al.  Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. , 2012, Physical review letters.

[35]  Song Wang,et al.  The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation , 2011 .

[36]  Thomas Bligaard,et al.  Density functional theory in surface chemistry and catalysis , 2011, Proceedings of the National Academy of Sciences.

[37]  Ping Liu,et al.  Fundamental studies of methanol synthesis from CO(2) hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). , 2010, Physical chemistry chemical physics : PCCP.

[38]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  A. Corma,et al.  Active sites for H2 adsorption and activation in Au/TiO2 and the role of the support. , 2009, The journal of physical chemistry. A.

[40]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[41]  Robert Schlögl,et al.  Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al(2)O(3) catalysts for methanol synthesis. , 2007, Angewandte Chemie.

[42]  Bernd Höhlein,et al.  Beyond Oil and Gas: The Methanol Economy, G.A. Olah, A. Goeppert, G.K.S. Prakash. Elsevier-VCH, Weinheim, Germany (2006), €, 24.90, SFR 40.00), ISBN: 3-527-31275-7 , 2007 .

[43]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[44]  Piotr Olszewski,et al.  Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2 , 2006 .

[45]  Thomas Bligaard,et al.  The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis , 2004 .

[46]  J. Fierro,et al.  Effect of Pd on Cu-Zn Catalysts for the Hydrogenation of CO2 to Methanol: Stabilization of Cu Metal Against CO2 Oxidation , 2002 .

[47]  A. Gross,et al.  Hydrogen adsorption on an open metal surface: H 2 / Pd ( 210 ) , 2002 .

[48]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[49]  M. Sahibzada,et al.  Pd-Promoted Cu/ZnO Catalyst Systems for Methanol Synthesis From CO2/H2 , 2000 .

[50]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[51]  Young Gul Kim,et al.  Modified Cu/ZnO/Al2O3 catalysts for methanol synthesis from CO2/H2 and CO/H2 , 1995 .

[52]  R. Herman,et al.  Higher alcohol and oxygenate synthesis over Cs/Cu/ZnO/M2O3 (M Al, Cr) catalysts , 1989 .

[53]  G. Chinchen,et al.  Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of14C-labelled reactants , 1987 .

[54]  S. C. Fung,et al.  Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide , 1978 .