A bidirectional path-finding algorithm and data structure for maritime routing

Route planning is an important problem for many real-time applications in open and complex environments. The maritime domain is a relevant example of such environments where dynamic phenomena and navigation constraints generate difficult route finding problems. This paper develops a spatial data structure that supports the search for an optimal route between two locations while minimizing a cost function. Although various search algorithms have been proposed so far (e.g. breadth-first search, bidirectional breadth-first search, Dijkstra’s algorithm, A*, etc.), this approach provides a bidirectional dynamic routing algorithm which is based on hexagonal meshes and an iterative deepening A* (IDA*) algorithm, and a front to front strategy using a dynamic graph that facilitates data accessibility. The whole approach is applied to the context of maritime navigation, taking into account navigation hazards and restricted areas. The algorithm developed searches for optimal routes while minimizing distance and computational time.

[1]  Ying Wang,et al.  Efficient encoding and spatial operation scheme for aperture 4 hexagonal discrete global grid system , 2013, Int. J. Geogr. Inf. Sci..

[2]  Kevin Sahr,et al.  HEXAGONAL DISCRETE GLOBAL GRID SYSTEMS FOR GEOSPATIAL COMPUTING , 2011 .

[3]  Helmut Pottmann,et al.  Geometry of multi-layer freeform structures for architecture , 2007, ACM Trans. Graph..

[4]  George L. Donohue,et al.  Temporal and Spatial Distribution of Airspace Complexity for Air Traffic Controller Workload-Based Sectorization , 2004 .

[5]  Jay Lee,et al.  Research Article: Extensions to least-cost path algorithms for roadway planning , 2003, Int. J. Geogr. Inf. Sci..

[6]  K. Sahr,et al.  Geodesic Discrete Global Grid Systems , 2003 .

[7]  Peter Yap,et al.  Grid-Based Path-Finding , 2002, Canadian Conference on AI.

[8]  Eddie Schwalb,et al.  Temporal Constraints: A Survey , 1998, Constraints.

[9]  Hermann Kaindl,et al.  Bidirectional Heuristic Search Reconsidered , 1997, J. Artif. Intell. Res..

[10]  Giovanni Manzini,et al.  BIDA: An Improved Perimeter Search Algorithm , 1995, Artif. Intell..

[11]  Jianping Xu,et al.  Improving cost-path tracing in a raster data format , 1994 .

[12]  Peter C. Nelson,et al.  Perimeter Search , 1994, Artif. Intell..

[13]  James B. H. Kwa,et al.  BS*: An Admissible Bidirectional Staged Heuristic Search Algorithm , 1989, Artif. Intell..

[14]  Richard E. Korf,et al.  Iterative-Deepening-A*: An Optimal Admissible Tree Search , 1985, IJCAI.

[15]  Dennis de Champeaux,et al.  An Improved Bidirectional Heuristic Search Algorithm , 1975, JACM.

[16]  John Freeman,et al.  The modelling of spatial relations , 1975 .

[17]  Stuart E. Dreyfus,et al.  An Appraisal of Some Shortest-Path Algorithms , 1969, Oper. Res..

[18]  T. A. J. Nicholson,et al.  Finding the Shortest Route between Two Points in a Network , 1966, Comput. J..

[19]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[20]  Eric Saux,et al.  A Modeling Approach for the Extraction of Semantic Information from a Maritime Corpus , 2013 .

[21]  Lawrence Mandow,et al.  A two-phase bidirectional heuristic search algorithm , 2012, STAIRS.

[22]  Xiao Cui,et al.  A*-based Pathfinding in Modern Computer Games , 2011 .

[23]  E. Rank,et al.  Spatial constraints in collaborative design processes , 2009 .

[24]  H. Ebadi,et al.  A New Method for Path Finding of Power Transmission Lines in Geospatial Information System Using Raster Networks and Minimum of Mean Algorithm , 2008 .

[25]  Helmut Pottmann,et al.  Discrete Surfaces for Architectural Design , 2007 .

[26]  Peter van Oosterom,et al.  Advances in Spatial Data Handling , 2002, Springer Berlin Heidelberg.

[27]  M. King LAST IN, FIRST OUT? , 1999 .

[28]  Dennis de Champeaux,et al.  Bidirectional Heuristic Search Again , 1983, JACM.

[29]  G. Dantzig On the Shortest Route Through a Network , 1960 .