Artificial neural networks in bioprocess state estimation.

The application of artificial neural networks to the estimation and prediction of bioprocess variables is presented in this paper. A neural network methodology is discussed, which uses environmental and physiological information available from on-line sensors, to estimate concentration of species in the bioreactor. Two case studies are presented, both based on the ethanol production by Zymomonas mobilis. An efficient optimization algorithm which reduces the number of iterations required for convergence is proposed. Results are presented for different training sets and different training methodologies. It is shown that the neural network estimator provides good on-line bioprocess state estimations.

[1]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[2]  H C Lim,et al.  Experimental adaptive on‐line optimization of cellular productivity of a continuous bakers' yeast culture , 1985, Biotechnology and bioengineering.

[3]  J N Petersen,et al.  Dynamic on‐line optimization of a bioreactor , 1990, Biotechnology and bioengineering.

[4]  S Shioya,et al.  An algorithmic approach to constructing the on‐line estimation system for the specific growth rate , 1989, Biotechnology and bioengineering.

[5]  Josiah C. Hoskins,et al.  Artificial neural network models for knowledge representation in chemical engineering , 1990 .

[6]  Lyle H. Ungar,et al.  Adaptive networks for fault diagnosis and process control , 1990 .

[7]  T. Sejnowski,et al.  Predicting the secondary structure of globular proteins using neural network models. , 1988, Journal of molecular biology.

[8]  M. Perrier,et al.  Nonlinear Estimation and Adaptive Control of a Fed-Batch Fermentor , 1989 .

[9]  N. F. Thornhill,et al.  Computer Applications in Fermentation Technology: Modelling and Control of Biotechnological Processes , 1989 .

[10]  Lyle H. Ungar,et al.  A bioreactor benchmark for adaptive network-based process control , 1990 .

[11]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[12]  J Swings,et al.  The biology of Zymomonas , 1977, Bacteriological reviews.

[13]  N. V. Bhat,et al.  Use of neural nets for dynamic modeling and control of chemical process systems , 1990 .

[14]  Manoel Fernando Tenorio,et al.  Self-organizing network for optimum supervised learning , 1990, IEEE Trans. Neural Networks.

[15]  T. McAvoy,et al.  Interpreting biosensor data via backpropagation , 1989, International 1989 Joint Conference on Neural Networks.

[16]  M. Nazmul Karim,et al.  Application of Dynamic Programming for Fermentative Ethanol Production by Zymomonas mobilis , 1990, 1990 American Control Conference.

[17]  Charles L. Cooney,et al.  Computer control of bakers' yeast production , 1979 .

[18]  D. Le A fast and robust unconstrained optimization method requiring minimum storage , 1985, Math. Program..

[19]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[20]  Arthur E. Humphrey,et al.  Real‐time estimation of aerobic batch fermentation biomass concentration by component balancing , 1978 .

[21]  Pramod Agrawal,et al.  A structured kinetic model for Zymomonas mobilis ATCC10988 , 1990, Biotechnology and bioengineering.

[22]  Peter L. Rogers,et al.  The fermentation kinetics of ethanol production by Zymomonas mobilis , 1983 .

[23]  D. Williams,et al.  On-Line Estimation of Cell Mass Using an Extended Kalman Filter , 1989 .

[24]  M. Ataai,et al.  A mathematical model for examining growth and sporulation processes of Bacillus subtilis , 1990, Biotechnology and bioengineering.

[25]  Sten Bay Jørgensen,et al.  Identification of a Simulated Continuous Yeast Fermentation , 1989 .

[26]  G. Stephanopoulos,et al.  Computer Applications to Fermentation Processes , 1984 .

[27]  Mark A. Kramer,et al.  Improvement of the backpropagation algorithm for training neural networks , 1990 .

[28]  J Thibault,et al.  On‐line prediction of fermentation variables using neural networks , 1990, Biotechnology and bioengineering.

[29]  G Stephanopoulos,et al.  Studies on on‐line bioreactor identification. I. Theory , 1984, Biotechnology and bioengineering.

[30]  Geoffrey E. Hinton,et al.  A general framework for parallel distributed processing , 1986 .

[31]  Denis Dochain,et al.  On-line estimation of microbial specific growth rates , 1986, Autom..

[32]  Ramaswamy Vaidyanathan,et al.  Process fault detection and diagnosis using neural networks , 1990 .

[33]  Bradley R. Holt,et al.  A Neural Network Structure for System Identification , 1990, 1990 American Control Conference.

[34]  Jules Thibault,et al.  Adaptive neural models for on‐line prediction in fermentation , 1991 .