A survey and taxonomy of performance improvement of canonical genetic programming

The genetic programming (GP) paradigm, which applies the Darwinian principle of evolution to hierarchical computer programs, has been applied with breakthrough success in various scientific and engineering applications. However, one of the main drawbacks of GP has been the often large amount of computational effort required to solve complex problems. Much disparate research has been conducted over the past 25 years to devise innovative methods to improve the efficiency and performance of GP. This paper attempts to provide a comprehensive overview of this work related to Canonical Genetic Programming based on parse trees and originally championed by Koza (Genetic programming: on the programming of computers by means of natural selection. MIT, Cambridge, 1992). Existing approaches that address various techniques for performance improvement are identified and discussed with the aim to classify them into logical categories that may assist with advancing further research in this area. Finally, possible future trends in this discipline and some of the open areas of research are also addressed.

[1]  Andrew M. Tyrrell,et al.  Enhancing the Performance of GP Using an Ancestry-Based Mate Selection Scheme , 2003, GECCO.

[2]  Peter Nordin,et al.  A compiling genetic programming system that directly manipulates the machine-code , 1994 .

[3]  Lishan Kang,et al.  A New Algorithm of Automatic Programming: GEGEP , 2006, SEAL.

[4]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[5]  John R. Koza,et al.  Two Ways of Discovering the Size and Shape of a Computer Program to Solve a Problem , 1995, ICGA.

[6]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[7]  F. Fernández,et al.  Saving Effort in Parallel GP by Means of Plagues , 2004, EuroGP.

[8]  Malcolm I. Heywood,et al.  Dynamic page based crossover in linear genetic programming , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Andrew M. Tyrrell,et al.  Positional Independence and Recombination in Cartesian Genetic Programming , 2006, EuroGP.

[10]  Kwong-Sak Leung,et al.  Data Mining Using Grammar Based Genetic Programming and Applications , 2000 .

[11]  Olivier Teytaud,et al.  A statistical learning theory approach of bloat , 2005, GECCO '05.

[12]  Hitoshi Iba,et al.  Sharing and refinement for reusable subroutines of genetic programming , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[13]  Riccardo Poli,et al.  A Review of Theoretical and Experimental Results on Schemata in Genetic Programming , 1998, EuroGP.

[14]  Conor Ryan,et al.  Ripple Crossover in Genetic Programming , 2001, EuroGP.

[15]  Mengjie Zhang,et al.  Algebraic simplification of GP programs during evolution , 2006, GECCO.

[16]  Marc Parizeau,et al.  Genetic Programming, Validation Sets, and Parsimony Pressure , 2006, EuroGP.

[17]  F. Eeckman,et al.  Evolution and Biocomputation: Computational Models of Evolution , 1995 .

[18]  Wolfgang Banzhaf,et al.  Linear-Tree GP and Its Comparison with Other GP Structures , 2001, EuroGP.

[19]  Riccardo Poli,et al.  Schema Theory for Genetic Programming with One-Point Crossover and Point Mutation , 1997, Evolutionary Computation.

[20]  David Jackson,et al.  Hierarchical genetic programming based on test input subsets , 2007, GECCO '07.

[21]  Les M. Howard,et al.  The GA-P: A Genetic Algorithm and Genetic Programming Hybrid , 1995, IEEE Expert.

[22]  Tomoyuki Hiroyasu,et al.  SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 , 2004, PPSN.

[23]  Riccardo Poli,et al.  Tournament Selection, Iterated Coupon-Collection Problem, and Backward-Chaining Evolutionary Algorithms , 2005, FOGA.

[24]  Seiji Yamada,et al.  Speedup of evolutionary behavior learning with crossover depending on the usage frequency of a node , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[25]  Francisco Fernández de Vega,et al.  Saving Resources with Plagues in Genetic Algorithms , 2004, PPSN.

[26]  Peter J. Angeline,et al.  Two self-adaptive crossover operators for genetic programming , 1996 .

[27]  John R. Koza,et al.  Genetic Programming II , 1992 .

[28]  Hitoshi Iba,et al.  Random Tree Generation for Genetic Programming , 1996, PPSN.

[29]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[30]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[31]  Ernesto Costa,et al.  Resource-limited genetic programming: the dynamic approach , 2005, GECCO '05.

[32]  Edmund K. Burke,et al.  The Speciating Island Model: An alternative parallel evolutionary algorithm , 2006, J. Parallel Distributed Comput..

[33]  T. M. English Proceedings of the third annual conference on evolutionary programming: A.V. Sebald and L.J. Fogel, River Edge, NJ: World Scientific, ISBN 981-02-1810-9, 371 pages, hardbound, $78 , 1995 .

[34]  Hitoshi Iba,et al.  Temporal Data Processing Using Genetic Programming , 1995, ICGA.

[35]  Riccardo Poli,et al.  Generalisation of the limiting distribution of program sizes in tree-based genetic programming and analysis of its effects on bloat , 2007, GECCO '07.

[36]  John R. Koza,et al.  Evolving Modules in Genetic Programming by Subtree Encapsulation , 2001, EuroGP.

[37]  Hugh Glaser,et al.  Parallel Implementation of a Genetic-Programming Based Tool for Symbolic Regression , 1998, Inf. Process. Lett..

[38]  John R. Koza,et al.  A Parallel Implementation of Genetic Programming that Achieves Super-Linear Performance , 1998, Inf. Sci..

[39]  Kevin J. Lang Hill Climbing Beats Genetic Search on a Boolean Circuit Synthesis Problem of Koza's , 1995, ICML.

[40]  Michèle Sebag,et al.  Avoiding the Bloat with Stochastic Grammar-Based Genetic Programming , 2001, Artificial Evolution.

[41]  H. Iba,et al.  Depth-dependent crossover for genetic programming , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[42]  B. W.,et al.  Size Fair and Homologous Tree Genetic Programming Crossovers , 1999 .

[43]  Riccardo Poli,et al.  Smooth Uniform Crossover with Smooth Point Mutation in Genetic Programming: A Preliminary Study , 1999, EuroGP.

[44]  Alfonso Rodríguez-Patón,et al.  Initialization method for grammar-guided genetic programming , 2006, Knowl. Based Syst..

[45]  William B. Langdon,et al.  Quadratic Bloat in Genetic Programming , 2000, GECCO.

[46]  Mariusz Boryczka,et al.  Eliminating Introns in Ant Colony Programming , 2005, Fundam. Informaticae.

[47]  Juan Antonio Gómez Pulido,et al.  Control of Bloat in Genetic Programming by Means of the Island Model , 2004, PPSN.

[48]  Byoung-Tak Zhang,et al.  Effects of selection schemes in genetic programming for time series prediction , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[49]  Santiago García Carbajal,et al.  Evolutive Introns: A Non-Costly Method of Using Introns in GP , 2001, Genetic Programming and Evolvable Machines.

[50]  Marco Tomassini,et al.  Parallel genetic programming: an application to trading models evolution , 1996 .

[51]  Sean Luke,et al.  A Comparison of Bloat Control Methods for Genetic Programming , 2006, Evolutionary Computation.

[52]  Alfonso Rodríguez-Patón,et al.  Grammar Based Crossover Operator in Genetic Programming , 2005, IWINAC.

[53]  Yang Zhang,et al.  Feature Extraction Using Multi-Objective Genetic Programming , 2006, Multi-Objective Machine Learning.

[54]  David Jackson,et al.  Dormant program nodes and the efficiency of genetic programming , 2005, GECCO '05.

[55]  Nguyen Xuan Hoai,et al.  Representation and structural difficulty in genetic programming , 2006, IEEE Transactions on Evolutionary Computation.

[56]  Jordan B. Pollack,et al.  Massively parallel genetic programming , 1996 .

[57]  Sean Luke,et al.  Modification Point Depth and Genome Growth in Genetic Programming , 2003, Evolutionary Computation.

[58]  John R. Woodward Complexity and Cartesian Genetic Programming , 2006, EuroGP.

[59]  Carlos M. Fonseca,et al.  'Identifying the structure of nonlinear dynamic systems using multiobjective genetic programming , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[60]  Peter J. Angeline,et al.  Competitive Environments Evolve Better Solutions for Complex Tasks , 1993, ICGA.

[61]  Justinian P. Rosca,et al.  Hierarchical Self-Organization in Genetic programming , 1994, ICML.

[62]  Maarten Keijzer Alternatives in Subtree Caching for Genetic Programming , 2004, EuroGP.

[63]  Jonas S. Almeida,et al.  Dynamic maximum tree depth: a simple technique for avoiding bloat in tree-based GP , 2003 .

[64]  Julian Francis Miller,et al.  Redundancy and computational efficiency in Cartesian genetic programming , 2006, IEEE Transactions on Evolutionary Computation.

[65]  Masafumi Hagiwara,et al.  Modified genetic programming based on elastic artificial selection and improved minimum description length , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[66]  Lourdes Araujo,et al.  Multiobjective Genetic Programming for Natural Language Parsing and Tagging , 2006, PPSN.

[67]  Mihai Oltean,et al.  Best SubTree genetic programming , 2007, GECCO '07.

[68]  Thomas Bräunl,et al.  Dynamic population variation in genetic programming , 2009, Inf. Sci..

[69]  Sean Luke,et al.  Fighting Bloat with Nonparametric Parsimony Pressure , 2002, PPSN.

[70]  Dana H. Ballard,et al.  Genetic Programming with Adaptive Representations , 1994 .

[71]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[72]  John R. Koza,et al.  Genetic Programming III: Darwinian Invention & Problem Solving , 1999 .

[73]  Kumar Chellapilla,et al.  Evolving computer programs without subtree crossover , 1997, IEEE Trans. Evol. Comput..

[74]  J. Pollack,et al.  Coevolving High-Level Representations , 1993 .

[75]  Peter Nordin,et al.  Complexity Compression and Evolution , 1995, ICGA.

[76]  Riccardo Poli,et al.  A Simple but Theoretically-Motivated Method to Control Bloat in Genetic Programming , 2003, EuroGP.

[77]  Kwong-Sak Leung,et al.  Combining genetic programming and inductive logic programming using logic grammars , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[78]  Ivanoe De Falco,et al.  An evolutionary approach for automatically extracting intelligible classification rules , 2005, Knowledge and Information Systems.

[79]  Alan Blair,et al.  A structure preserving crossover in grammatical evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[80]  Riccardo Poli,et al.  Fitness Causes Bloat: Mutation , 1997, EuroGP.

[81]  Ernesto Costa,et al.  Dynamic Limits for Bloat Control: Variations on Size and Depth , 2004, GECCO.

[82]  Peter A. Whigham,et al.  Grammatically-based Genetic Programming , 1995 .

[83]  Wolfgang Banzhaf,et al.  Adaption of Operator Probabilities in Genetic Programming , 2001, EuroGP.

[84]  Matthew J. Streeter,et al.  The Root Causes of Code Growth in Genetic Programming , 2003, EuroGP.

[85]  Hussein A. Abbass,et al.  Tree Adjoining Grammars, Language Bias, and Genetic Programming , 2003, EuroGP.

[86]  Steffen Christensen,et al.  Solving the artificial ant on the Santa Fe trail problem in 20,696 fitness evaluations , 2007, GECCO '07.

[87]  Wolfgang Banzhaf,et al.  A comparison of linear genetic programming and neural networks in medical data mining , 2001, IEEE Trans. Evol. Comput..

[88]  Wolfgang Banzhaf,et al.  Dynamic Subset Selection Based on a Fitness Case Topology , 2004, Evolutionary Computation.

[89]  John E. Perry,et al.  The effect of population enrichment in genetic programming , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[90]  Nicholas Freitag McPhee,et al.  Accurate Replication in Genetic Programming , 1995, ICGA.

[91]  Lothar Thiele,et al.  Multiobjective genetic programming: reducing bloat using SPEA2 , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[92]  F. Oppacher,et al.  Hybridized crossover-based search techniques for program discovery , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[93]  Lothar Thiele,et al.  Genetic Programming and Redundancy , 1994 .

[94]  W. Banzhaf,et al.  1 Linear Genetic Programming , 2007 .

[95]  Leonardo Vanneschi,et al.  Dynamic Size Populations in Distributed Genetic Programming , 2005, EuroGP.

[96]  Zbigniew J. Czech,et al.  Grammars in genetic programming , 2000 .

[97]  Mengjie Zhang,et al.  Linear Genetic Programming for Multi-class Object Classification , 2005, Australian Conference on Artificial Intelligence.

[98]  Satoshi Sato,et al.  Non-destructive Depth-Dependent Crossover for Genetic Programming , 1998, EuroGP.

[99]  Mengjie Zhang,et al.  An analysis of constructive crossover and selection pressure in genetic programming , 2007, GECCO '07.

[100]  Terence Soule,et al.  Function choice, resiliency and growth in genetic programming , 2005, GECCO '05.

[101]  Ernesto Costa,et al.  Comparing tree depth limits and resource-limited GP , 2005, 2005 IEEE Congress on Evolutionary Computation.

[102]  William B. Langdon,et al.  Size Fair and Homologous Tree Crossovers for Tree Genetic Programming , 2000, Genetic Programming and Evolvable Machines.

[103]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[104]  Sean Luke,et al.  Alternative Bloat Control Methods , 2004, GECCO.

[105]  Leonardo Vanneschi,et al.  A Study of Diversity in Multipopulation Genetic Programming , 2003, Artificial Evolution.

[106]  Kwong-Sak Leung,et al.  Applying logic grammars to induce sub-functions in genetic programming , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[107]  Michael O'Neill,et al.  Grammatical Evolution: Evolving Programs for an Arbitrary Language , 1998, EuroGP.

[108]  Yaochu Jin,et al.  Multi-Objective Machine Learning , 2006, Studies in Computational Intelligence.

[109]  Alan Blair,et al.  Dynamically Defined Functions In Grammatical Evolution , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[110]  Peter Rockett,et al.  The roles of diversity preservation and mutation in preventing population collapse in multiobjective genetic programming , 2007, GECCO '07.

[111]  Hitoshi Iba,et al.  Modeling genetic network by hybrid GP , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[112]  Wei-Pang Yang,et al.  Designing a classifier by a layered multi-population genetic programming approach , 2007, Pattern Recognit..

[113]  John R. Koza,et al.  Hierarchical Genetic Algorithms Operating on Populations of Computer Programs , 1989, IJCAI.

[114]  Wen-Yang Lin,et al.  A Genetic Selection Algorithm for OLAP Data Cubes , 2003, Knowledge and Information Systems.

[115]  Malcolm J. Heywood,et al.  Page-based linear genetic programming , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[116]  Terence Soule,et al.  Code growth in genetic programming , 1996 .

[117]  Frank W. Moore,et al.  A new methodology for reducing brittleness in genetic programming , 1997, Proceedings of the IEEE 1997 National Aerospace and Electronics Conference. NAECON 1997.

[118]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[119]  Riccardo Poli,et al.  On the Search Properties of Different Crossover Operators in Genetic Programming , 2001 .

[120]  J. K. Kinnear,et al.  Alternatives in automatic function definition: a comparison of performance , 1994 .

[121]  Du Zhang,et al.  GAPS: a genetic programming system , 2000, Proceedings 24th Annual International Computer Software and Applications Conference. COMPSAC2000.

[122]  Guisheng Zhai,et al.  Design of nonlinear control systems by means of differential genetic programming , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[123]  Alan Piszcz,et al.  Genetic programming: optimal population sizes for varying complexity problems , 2006, GECCO '06.

[124]  L. Altenberg The evolution of evolvability in genetic programming , 1994 .

[125]  Wolfgang Banzhaf,et al.  Evolving Teams of Predictors with Linear Genetic Programming , 2001, Genetic Programming and Evolvable Machines.

[126]  Lee Altenberg,et al.  Genome Growth and the Evolution of the Genotype-Phenotype Map , 1995, Evolution and Biocomputation.

[127]  David Jackson,et al.  Layered Learning in Boolean GP Problems , 2007, EuroGP.

[128]  Thomas Bräunl,et al.  Population variation in genetic programming , 2007, Inf. Sci..

[129]  Terence Soule,et al.  An Analysis of the Causes of Code Growth in Genetic Programming , 2002, Genetic Programming and Evolvable Machines.

[130]  Aurora Trinidad Ramirez Pozo,et al.  Controlling the Population Size in Genetic Programming , 2002, SBIA.

[131]  Hussein A. Abbass,et al.  Anticorrelation: A Diversity Promoting Mechanisms in Ensemble Learning , 2001 .

[132]  John R. Koza,et al.  Genetic Programming IV: Routine Human-Competitive Machine Intelligence , 2003 .

[133]  Huayang Xie,et al.  Diversity Control in GP with ADF for Regression Tasks , 2005, Australian Conference on Artificial Intelligence.

[134]  Yang Zhang,et al.  Evolving optimal feature extraction using multi-objective genetic programming: a methodology and preliminary study on edge detection , 2005, GECCO '05.

[135]  P. Nordin Genetic Programming III - Darwinian Invention and Problem Solving , 1999 .

[136]  J. Pollack,et al.  The Evolutionary Induction of Subroutines , 1997 .

[137]  Manuela M. Veloso,et al.  Layered Learning , 2000, ECML.

[138]  Leonardo Vanneschi,et al.  A purely evolutionary memetic algorithm as a first step towards symbiotic coevolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[139]  Sean Luke,et al.  Lexicographic Parsimony Pressure , 2002, GECCO.

[140]  H. IBA,et al.  Recombination guidance for numerical genetic programming , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[141]  Lee Spector,et al.  Size Control Via Size Fair Genetic Operators In The PushGP Genetic Programming System , 2002, GECCO.

[142]  Julian Francis Miller,et al.  The Automatic Acquisition, Evolution and Reuse of Modules in Cartesian Genetic Programming , 2008, IEEE Transactions on Evolutionary Computation.

[143]  Hugo de Garis,et al.  Genetic Programming , 1990, ML.

[144]  Nguyen Xuan Hoai,et al.  A Framework For Tree-Adjunct Grammar Guided Genetic Programming , 2001 .

[145]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[146]  Mengjie Zhang,et al.  Population Clustering in Genetic Programming , 2006, EuroGP.

[147]  Ivan Tanev,et al.  Parallel genetic programming: component object-based distributed collaborative approach , 2001, Proceedings 15th International Conference on Information Networking.

[148]  Tao Guo,et al.  A two-level hybrid evolutionary algorithm for modeling one-dimensional dynamic systems by higher-order ODE models , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[149]  John R. Koza,et al.  Genetic Programming as a Darwinian Invention Machine , 1999, EuroGP.

[150]  Huashan Chen,et al.  Improved Approach of Genetic Programming and Applications for Data Mining , 2006, ICNC.

[151]  Ayahiko Niimi,et al.  Extended genetic programming using reinforcement learning operation , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[152]  John R. Koza,et al.  Performance improvement of machine learning via automatic discovery of facilitating functions as applied to a problem of symbolic system identification , 1993, IEEE International Conference on Neural Networks.

[153]  Simon Handley,et al.  On the use of a directed acyclic graph to represent a population of computer programs , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[154]  J.M. Sanchez,et al.  Efficient use of computational resources in genetic programming: controlling the bloat phenomenon by means of the island model , 2002, IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02.

[155]  Peter J. Angeline,et al.  Extending Genetic Programming with Recombinative Guidance , 1996 .

[156]  Hitoshi Iba,et al.  Genetic programming using a minimum description length principle , 1994 .

[157]  Aurora Trinidad Ramirez Pozo,et al.  Grammatically based genetic programming for mining relational databases , 2003, 23rd International Conference of the Chilean Computer Science Society, 2003. SCCC 2003. Proceedings..

[158]  Dean F. Hougen,et al.  Imitating success: a memetic crossover operator for genetic programming , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[159]  Jason H. Moore,et al.  Genetic Programming Neural Networks as a Bioinformatics Tool for Human Genetics , 2004, GECCO.

[160]  Dimitar Filev,et al.  Intelligent systems in the automotive industry: applications and trends , 2007, Knowledge and Information Systems.

[161]  Mengjie Zhang,et al.  Online Program Simplification in Genetic Programming , 2006, SEAL.

[162]  Sean Luke,et al.  Two fast tree-creation algorithms for genetic programming , 2000, IEEE Trans. Evol. Comput..

[163]  Leonardo Vanneschi,et al.  Diversity analysis in cellular and multipopulation genetic programming , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[164]  Leonardo Vanneschi,et al.  Studying the influence of synchronous and asynchronous parallel GP on programs length evolution , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[165]  Justinian P. Rosca,et al.  Discovery of subroutines in genetic programming , 1996 .

[166]  Terence Soule,et al.  Exons and Code Growth in Genetic Programming , 2002, EuroGP.

[167]  Erik D. Goodman,et al.  The royal tree problem, a benchmark for single and multiple population genetic programming , 1996 .

[168]  Hitoshi Iba,et al.  Distributed genetic programming: empirical study and analysis , 1996 .

[169]  M. Tomassini,et al.  Saving computational effort in genetic programming by means of plagues , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[170]  Kwong-Sak Leung,et al.  Genetic Parallel Programming: Design and Implementation , 2006, Evolutionary Computation.

[171]  Eddy Flerackers,et al.  Reducing Bloat in Genetic Programming , 2001, Fuzzy Days.

[172]  Steven M. Gustafson,et al.  Layered Learning in Genetic Programming for a Cooperative Robot Soccer Problem , 2001, EuroGP.

[173]  Aravind K. Joshi,et al.  Tree Adjunct Grammars , 1975, J. Comput. Syst. Sci..

[174]  Marco Tomassini,et al.  Experimental study of isolated multipopulation genetic programming , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[175]  Philippe Collard,et al.  Using a double-based genetic algorithm on a population of computer programs , 1994, Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94.

[176]  Mengjie Zhang,et al.  Looseness Controlled Crossover in GP for Object Recognition , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[177]  C. Giraud-Carrier,et al.  A depth controlling strategy for Strongly Typed Evolutionary Programming , 1999 .

[178]  Kotaro Hirasawa,et al.  Comparison between Genetic Network Programming (GNP) and Genetic Programming (GP) , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[179]  Leonardo Vanneschi,et al.  A new technique for dynamic size populations in genetic programming , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[180]  William F. Punch HOW EFFECTIVE ARE MULTIPLE POPULATIONS IN GENETIC PROGRAMMING , 1998 .

[181]  Victor Ciesielski,et al.  Comparison of the Effectiveness of Decimation and Automatically Defined Functions , 2005, KES.

[182]  Byoung-Tak Zhang,et al.  Balancing Accuracy and Parsimony in Genetic Programming , 1995, Evolutionary Computation.

[183]  Nicholas Freitag McPhee,et al.  On the Strength of Size Limits in Linear Genetic Programming , 2004, GECCO.

[184]  Daniel A. Ashlock,et al.  Single parent genetic programming , 2005, 2005 IEEE Congress on Evolutionary Computation.

[185]  Alfonso Rodríguez-Patón,et al.  Evolutionary system for automatically constructing and adapting radial basis function networks , 2006, Neurocomputing.

[186]  Giandomenico Spezzano,et al.  A scalable cellular implementation of parallel genetic programming , 2003, IEEE Trans. Evol. Comput..

[187]  Steven M. Gustafson,et al.  Genetic Programming And Multi-agent Layered Learning By Reinforcements , 2002, GECCO.

[188]  ProgrammingJustinian P. RoscaComputer Analysis of Complexity Drift in Genetic , 1997 .

[189]  Luciano Sánchez,et al.  Interval-valued GA-P algorithms , 2000, IEEE Trans. Evol. Comput..

[190]  Jason M. Daida,et al.  Characterizing the dynamics of symmetry breaking in genetic programming , 2006, GECCO.

[191]  Asoke K. Nandi,et al.  Breast Cancer Diagnosis Using Genetic Programming Generated Feature , 2005 .

[192]  Leonardo Vanneschi,et al.  The Effect of Plagues in Genetic Programming: A Study of Variable-Size Populations , 2003, EuroGP.

[193]  Jason M. Daida,et al.  Identifying Structural Mechanisms in Standard Genetic Programming , 2003, GECCO.

[194]  Szilvia Zvada,et al.  Improving Grammar-Based Evolutionary Algorithms via Attributed Derivation Trees , 2004, EuroGP.

[195]  Terence Soule,et al.  How to Choose Appropriate Function Sets for Gentic Programming , 2004, EuroGP.

[196]  Xin Yao,et al.  Evolutionary programming using mutations based on the Levy probability distribution , 2004, IEEE Transactions on Evolutionary Computation.

[197]  Dean F. Hougen,et al.  Memetic Crossover for Genetic Programming: Evolution Through Imitation , 2004, GECCO.

[198]  Walter Alden Tackett,et al.  Recombination, selection, and the genetic construction of computer programs , 1994 .

[199]  Conor Ryan,et al.  On the constructiveness of context-aware crossover , 2007, GECCO '07.

[200]  Peter J. Angeline,et al.  Multiple Interacting Programs: a Representation for Evolving Complex Behavior , 1998, Cybern. Syst..

[201]  Mengjie Zhang,et al.  Automatic Selection Pressure Control in Genetic Programming , 2006, Sixth International Conference on Intelligent Systems Design and Applications.

[202]  John R. Koza,et al.  Parallel genetic programming: a scalable implementation using the transputer network architecture , 1996 .

[203]  Malcolm I. Heywood,et al.  Directing crossover for reduction of bloat in GP , 2002, IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No.02CH37373).

[204]  Bart Wyns,et al.  Self-Improvement to Control Code Growth in Genetic Programming , 2003, Artificial Evolution.

[205]  Peter Nordin,et al.  AIM-GP and parallelism , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[206]  Thomas Haynes,et al.  Depth-fair crossover in genetic programming , 1999, SAC '99.

[207]  Mengjie Zhang,et al.  Investigation of brood size in GP with brood recombination crossover for object recognition , 2006 .

[208]  Ann Nowé,et al.  Linear genetic programming using a compressed genotype representation , 2005, 2005 IEEE Congress on Evolutionary Computation.

[209]  Mengjie Zhang,et al.  Another investigation on tournament selection: modelling and visualisation , 2007, GECCO '07.

[210]  Mariusz Boryczka,et al.  Ant Colony Programming for Approximation Problems , 2002, Intelligent Information Systems.

[211]  Riccardo Poli,et al.  The evolution of size and shape , 1999 .

[212]  Walter Alden Tackett,et al.  The unique implications of brood selection for genetic programming , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[213]  Bart Wyns,et al.  Limiting code growth to improve robustness in tree-based genetic programming , 2007, GECCO '07.

[214]  Dimitris C. Dracopoulos,et al.  Speeding up genetic programming: a parallel BSP implementation , 1996 .

[215]  Christian Igel,et al.  Reducing the Number of Fitness Evaluations in Graph Genetic Programming Using a Canonical Graph Indexed Database , 2007, Evolutionary Computation.

[216]  Philippe Collard,et al.  Size Control with Maximum Homologous Crossover , 2005, Artificial Evolution.

[217]  P. Nordin,et al.  Explicitly defined introns and destructive crossover in genetic programming , 1996 .

[218]  W. Langdon The evolution of size in variable length representations , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[219]  William H. Hsu,et al.  Evolutionary tree genetic programming , 2005, GECCO '05.

[220]  Ernesto Costa,et al.  Resource-Limited Genetic Programming: Replacing Tree Depth Limits , 2005 .

[221]  Bill C White,et al.  Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases , 2003, BMC Bioinformatics.

[222]  Matthias Fuchs,et al.  Large Populations Are Not Always The Best Choice In Genetic Programming , 1999, GECCO.

[223]  John Levine,et al.  Multi Niche Parallel GP with a Junk-Code Migration Model , 2003, EuroGP.

[224]  N. Hopper,et al.  AppGP: an alternative structural representation for GP , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[225]  M. Yanagiya,et al.  Efficient genetic programming based on binary decision diagrams , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[226]  Michael A. Lones,et al.  Enzyme genetic programming , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[227]  Giandomenico Spezzano,et al.  P-CAGE: An Environment for Evolutionary Computation in Peer-to-Peer Systems , 2006, EuroGP.

[228]  Alan Blair,et al.  A Self-Selecting Crossover Operator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[229]  Peter J. Angeline,et al.  Genetic programming and emergent intelligence , 1994 .

[230]  Alfonso Rodríguez-Patón,et al.  Crossover and mutation operators for grammar-guided genetic programming , 2007, Soft Comput..

[231]  Terence Soule,et al.  Exploiting disruption aversion to control code bloat , 2005, GECCO '05.

[232]  Peter J. Fleming,et al.  Evolution of mathematical models of chaotic systems based on multiobjective genetic programming , 2005, Knowledge and Information Systems.

[233]  Mihai Oltean,et al.  Solving even-parity problems using traceless genetic programming , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[234]  Conor Ryan,et al.  Using context-aware crossover to improve the performance of GP , 2006, GECCO '06.

[235]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[236]  Peter Nordin,et al.  Using genetic programming with negative parsimony pressure on exons for portfolio optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[237]  Scott J. Harmon,et al.  Empirical Comparison of Incremental Reuse Strategies in Genetic Programming for Keep-Away Soccer , 2004 .

[238]  ZHANGHong,et al.  Grammar Based Genetic Programming Using Linear Representations , 2003 .

[239]  David Jackson Fitness evaluation avoidance in Boolean GP problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[240]  Thomas Fernandez,et al.  Virtual Ramping of Genetic Programming Populations , 2004, GECCO.

[241]  Tatiana Kalganova,et al.  Evolving more efficient digital circuits by allowing circuit layout evolution and multi-objective fitness , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[242]  Sean Luke,et al.  Population Implosion in Genetic Programming , 2003, GECCO.

[243]  P.A. Whigham,et al.  A Schema Theorem for context-free grammars , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[244]  Patrik D'haeseleer,et al.  Context preserving crossover in genetic programming , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[245]  Walter Böhm,et al.  Exact Uniform Initialization For Genetic Programming , 1996, FOGA.

[246]  Neal Wagner,et al.  Genetic Programming with Efficient Population Control for Financial Time Series Prediction , 2005 .

[247]  Conor Ryan,et al.  A Less Destructive, Context-Aware Crossover Operator for GP , 2006, EuroGP.

[248]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[249]  Leonardo Vanneschi,et al.  An Empirical Study of Multipopulation Genetic Programming , 2003, Genetic Programming and Evolvable Machines.

[250]  Peter J. Angeline,et al.  GENETIC PROGRAMMING: A CURRENT SNAPSHOT , 1994 .

[251]  Cyril De Fillon,et al.  A Divide & Conquer Strategy for Improving Efficiency and Probability of Success in Genetic Programming , 2006, EuroGP.

[252]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[253]  Walter A. Kosters,et al.  Detecting and Pruning Introns for Faster Decision Tree Evolution , 2004, PPSN.

[254]  Julian Francis Miller,et al.  Cartesian genetic programming , 2010, GECCO.

[255]  Asoke K. Nandi,et al.  Neutral offspring controlling operators in genetic programming , 2007, Pattern Recognit..

[256]  Edwin D. de Jong,et al.  Multi-Objective Methods for Tree Size Control , 2003, Genetic Programming and Evolvable Machines.

[257]  Kwong-Sak Leung,et al.  Parallel Programs Are More Evolvable than Sequential Programs , 2003, EuroGP.

[258]  Terence Soule,et al.  Effects of Code Growth and Parsimony Pressure on Populations in Genetic Programming , 1998, Evolutionary Computation.

[259]  Tobias Blickle,et al.  Evolving Compact Solutions in Genetic Programming: A Case Study , 1996, PPSN.

[260]  A.B. Kahng,et al.  Improving the performance of evolutionary optimization by dynamically scaling the evaluation function , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.