Influence of Al ion implantation on electrical and optical properties in nitride TJ VCSEL

In this paper, we present numerical simulations of nitride tunnel junction VCSELs (Vertical-Cavity Surface-Emitting Laser). This analysis concerned lasers emitting 405 nm wavelength. The simulated VCSEL is similar to the structure fabricated at University of California, Santa Barbara (UCSB). This structure has an Al-ion implantation applied for outer regions of the cavity. The results show how threshold parameters (threshold temperature and threshold current) and emitted power depend on the contrast of the refractive index in this implantation. We also analyze the influence of the implantation thickness and dimensions of the electrical aperture of the laser on capacitance phenomena occurring in the laser.

[1]  H. Kuo,et al.  CW lasing of current injection blue GaN-based vertical cavity surface emitting laser , 2008 .

[2]  T. Mukai,et al.  Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection , 2008 .

[3]  P. Moser,et al.  Numerical model of capacitance in vertical-cavity surface-emitting lasers , 2016 .

[4]  Charles A. Forman,et al.  Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact , 2018 .

[5]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[6]  M. Wasiak Mathematical rigorous approach to simulate an over-threshold VCSEL operation , 2011 .

[7]  P. Śpiewak,et al.  Impact of AlN-aperture on optical and electrical properties of nitride VCSEL , 2016, 2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD).

[8]  R. Sarzała,et al.  An appreciation of usability of the finite element method for the thermal analysis of stripe-geometry diode lasers , 1990 .

[9]  R. Sarzała,et al.  Finite-element thermal model for buried-heterostructure diode lasers , 1994 .

[10]  Latif Ullah Khan,et al.  Visible light communication: Applications, architecture, standardization and research challenges , 2017, Digit. Commun. Networks.

[11]  M. Bugajski,et al.  Comprehensive self-consistent three-dimensional simulation of an operation of the GaAs-based oxide-confined 1.3-μm quantum-dot (InGa)As/GaAs vertical-cavity surface-emitting lasers , 2004 .

[12]  R. Sarzała,et al.  Thermal crosstalk in arrays of III-N-based Lasers , 2013 .

[14]  T. Czyszanowski,et al.  Mode transformation enhanced in nitride diode lasers by modification of their buffer layers , 2001 .

[15]  S. Denbaars,et al.  Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture , 2015 .