Higher-order meshing of implicit geometries - part II: Approximations on manifolds

Abstract A new concept for the higher-order accurate approximation of partial differential equations on manifolds is proposed where a surface mesh composed by higher-order elements is automatically generated based on level-set data. Thereby, it enables a completely automatic workflow from the geometric description to the numerical analysis without any user-intervention. A master level-set function defines the shape of the manifold through its zero-isosurface which is then restricted to a finite domain by additional level-set functions. It is ensured that the surface elements are sufficiently continuous and shape regular which is achieved by manipulating the background mesh. The numerical results show that optimal convergence rates are obtained with a moderate increase in the condition number compared to handcrafted surface meshes.

[1]  Peter Hansbo,et al.  A stabilized cut finite element method for partial differential equations on surfaces: The Laplace–Beltrami operator , 2013, 1312.1097.

[2]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[3]  A. Reusken,et al.  On surface meshes induced by level set functions , 2012, Comput. Vis. Sci..

[4]  Charles M. Elliott,et al.  Eulerian finite element method for parabolic PDEs on implicit surfaces , 2008 .

[5]  Maxim Olshanskii,et al.  Numerical integration over implicitly defined domains for higher order unfitted finite element methods , 2016, 1601.06182.

[6]  Peter Hansbo,et al.  Finite element modeling of a linear membrane shell problem using tangential differential calculus , 2014 .

[7]  Peter Deuflhard,et al.  Adaptive Numerical Solution of PDEs , 2012 .

[8]  Hongkai Zhao,et al.  An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface , 2003, J. Sci. Comput..

[9]  Charles M. Elliott,et al.  An h-narrow band finite-element method for elliptic equations on implicit surfaces , 2010 .

[10]  Maxim A. Olshanskii,et al.  A finite element method for surface PDEs: matrix properties , 2009, Numerische Mathematik.

[11]  Maxim A. Olshanskii,et al.  An Adaptive Surface Finite Element Method Based on Volume Meshes , 2012, SIAM J. Numer. Anal..

[12]  A. Reusken,et al.  Numerical Methods for Two-phase Incompressible Flows , 2011 .

[13]  Peter Hansbo,et al.  Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem , 2014, 1410.7913.

[14]  Samir Omerovic,et al.  Higher-order meshing of implicit geometries - part I: Integration and interpolation in cut elements , 2017, ArXiv.

[15]  Maxim A. Olshanskii,et al.  A stabilized finite element method for advection-diffusion equations on surfaces , 2013, 1301.3741.

[16]  Yin Yang,et al.  A level-set continuum method for two-phase flows with insoluble surfactant , 2012, J. Comput. Phys..

[17]  T. Fries,et al.  Higher‐order accurate integration of implicit geometries , 2016 .

[18]  Charles M. Elliott,et al.  Unfitted Finite Element Methods Using Bulk Meshes for Surface Partial Differential Equations , 2013, SIAM J. Numer. Anal..

[19]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[20]  Charles M. Elliott,et al.  ANALYSIS OF A DIFFUSE INTERFACE APPROACH TO AN ADVECTION DIFFUSION EQUATION ON A MOVING SURFACE , 2009 .

[21]  M. Burger Finite element approximation of elliptic partial differential equations on implicit surfaces , 2009 .

[22]  Arnold Reusken,et al.  A Higher Order Finite Element Method for Partial Differential Equations on Surfaces , 2016, SIAM J. Numer. Anal..

[23]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[24]  Ramsharan Rangarajan,et al.  Universal Meshes: A new paradigm for computing with nonconforming triangulations , 2012, ArXiv.

[25]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[26]  A. Voigt,et al.  PDE's on surfaces---a diffuse interface approach , 2006 .

[27]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[28]  Qiang Du,et al.  Finite element approximation of the Cahn–Hilliard equation on surfaces , 2011 .

[29]  C. M. Elliott,et al.  An ALE ESFEM for Solving PDEs on Evolving Surfaces , 2012 .

[30]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[31]  J. Sethian,et al.  Transport and diffusion of material quantities on propagating interfaces via level set methods , 2003 .

[32]  Alan Demlow,et al.  Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..

[33]  K. Bathe,et al.  Displacement-Based Shell Finite Elements , 2011 .

[34]  Michel C. Delfour,et al.  A Boundary Differential Equation for Thin Shells , 1995 .

[35]  M. Delfour,et al.  Tangential Differential Equations for Dynamical Thin/Shallow Shells , 1996 .

[36]  Arnold Reusken,et al.  Analysis of trace finite element methods for surface partial differential equations , 2015 .

[37]  Alan Demlow,et al.  An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..

[38]  Peter Hansbo,et al.  Finite element approximation of the Laplace–Beltrami operator on a surface with boundary , 2015, Numerische Mathematik.

[39]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .