Power-law blinking in the fluorescence of single organic molecules.

The blinking behavior of perylene diïmide molecules is investigated at the single-molecule level. We observe long-time scale blinking of individual multi-chromophoric complexes embedded in a poly(methylmethacrylate) matrix, as well as for the monomeric dye absorbed on a glass substrate at ambient conditions. In both these different systems, the blinking of single molecules is found to obey analogous power-law statistics for both the on and off periods. The observed range for single-molecular power-law blinking extends over the full experimental time window, covering four orders of magnitude in time and six orders of magnitude in probability density. From molecule to molecule, we observe a large spread in off-time power-law exponents. The distributions of off-exponents in both systems are markedly different whereas both on-exponent distributions appear similar. Our results are consistent with models that ascribe the power-law behavior to charge separation and (environment-dependent) recombination by electron tunneling to a dynamic distribution of charge acceptors. As a consequence of power-law statistics, single molecule properties like the total number of emitted photons display non-ergodicity.

[1]  Herman L Offerhaus,et al.  Accurate and unbiased estimation of power-law exponents from single-emitter blinking data. , 2006, The Journal of chemical physics.

[2]  D. Reinhoudt,et al.  Effect of disorder on ultrafast exciton dynamics probed by single molecule spectroscopy. , 2006, Physical review letters.

[3]  A. Alivisatos,et al.  Continuous distribution of emission states from single CdSe/ZnS quantum dots. , 2006, Nano letters.

[4]  Toby D M Bell,et al.  Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface. , 2006, The journal of physical chemistry. A.

[5]  R. Marcus,et al.  Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles. , 2005, Physical review letters.

[6]  M. Garcia-Parajo,et al.  Power-law-distributed dark states are the main pathway for photobleaching of single organic molecules. , 2005, Physical review letters.

[7]  G. Margolin,et al.  Single-molecule chemical reactions: reexamination of the Kramers approach. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  R. Marcus,et al.  Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots. , 2005, The Journal of chemical physics.

[9]  J. Schuster,et al.  Influence of self-trapped states on the fluorescence intermittency of single molecules , 2005 .

[10]  C. Blum,et al.  Correlation of emission intensity and spectral diffusion in room temperature single-molecule spectroscopy. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  M. Orrit,et al.  Intersystem crossing mechanisms and single molecule fluorescence: Terrylene in anthracene crystals , 2005 .

[12]  M. Garcia-Parajo,et al.  Energy transfer in single-molecule photonic wires. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  M. Orrit,et al.  Statistical evaluation of single nano-object fluorescence. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  F. Cichos,et al.  Blinking of single molecules in various environments , 2005 .

[15]  M. Orrit,et al.  Single-photon sources , 2005 .

[16]  F. Cichos,et al.  Correlation between photoluminescence intermittency of CdSe quantum dots and self-trapped states in dielectric media , 2005 .

[17]  D. Reinhoudt,et al.  Single-molecule pump-probe detection resolves ultrafast pathways in individual and coupled quantum systems. , 2005, Physical review letters.

[18]  M. Orrit,et al.  Environment-dependent blinking of single semiconductor nanocrystals and statistical aging of ensembles , 2005 .

[19]  D. Reinhoudt,et al.  Single molecule photobleaching probes the exciton wave function in a multichromophoric system. , 2004, Physical Review Letters.

[20]  J. Hofkens,et al.  Higher-excited-state photophysical pathways in multichromophoric systems revealed by single-molecule fluorescence spectroscopy. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  J. Verhoeven,et al.  Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Margolin,et al.  Nonergodicity of blinking nanocrystals and other Lévy-walk processes. , 2004, Physical review letters.

[23]  K. Müllen,et al.  Exponential and Power-Law Kinetics in Single-Molecule Fluorescence Intermittency , 2004 .

[24]  E. Lutz Power-law tail distributions and nonergodicity. , 2004, Physical review letters.

[25]  I. Osad’ko Power-law statistics of intermittent photoluminescence in single semiconductor nanocrystals , 2004 .

[26]  P. Bordat,et al.  Coherent electronic coupling versus localization in individual molecular dimers. , 2004, Physical review letters.

[27]  E. Barkai,et al.  Aging correlation functions for blinking nanocrystals, and other on-off stochastic processes. , 2004, The Journal of chemical physics.

[28]  Michel L. Goldstein,et al.  Problems with fitting to the power-law distribution , 2004, cond-mat/0402322.

[29]  J. Roch,et al.  Photon statistics characterization of a single-photon source , 2003, quant-ph/0312084.

[30]  Michael W. Holman,et al.  Single-Molecule Spectroscopy of Intramolecular Electron Transfer in Donor-Bridge-Acceptor Systems , 2003 .

[31]  M. Orrit,et al.  Photoblinking of Rhodamine 6G in Poly(vinyl alcohol): Radical Dark State Formed through the Triplet , 2003 .

[32]  N. F. Hulst,et al.  Single molecule lifetime fluctuations reveal segmental dynamics in polymers. , 2003, Physical review letters.

[33]  David J. Nesbitt,et al.  Modeling distributed kinetics in isolated semiconductor quantum dots , 2003 .

[34]  Michel Orrit,et al.  Simple model for the power-law blinking of single semiconductor nanocrystals , 2002 .

[35]  M Dahan,et al.  Statistical aging and nonergodicity in the fluorescence of single nanocrystals. , 2002, Physical review letters.

[36]  R. Gronheid,et al.  Parameters Influencing the On- and Off-Times in the Fluorescence Intensity Traces of Single Cyanine Dye Molecules , 2002 .

[37]  M Dahan,et al.  Bunching and antibunching in the fluorescence of semiconductor nanocrystals. , 2001, Optics letters.

[38]  P. Bordat,et al.  Watching the Photo-Oxidation of a Single Aromatic Hydrocarbon Molecule. , 2001, Angewandte Chemie.

[39]  F. Kulzer,et al.  Fluoreszenzmikroskopische Verfolgung des photooxidativen Abbaus eines einzelnen aromatischen Kohlenwasserstoffmoleküls , 2001 .

[40]  David J. Nesbitt,et al.  ``On''/``off'' fluorescence intermittency of single semiconductor quantum dots , 2001 .

[41]  Robert Neuhauser,et al.  Blinking statistics in single semiconductor nanocrystal quantum dots , 2001 .

[42]  T. Weil,et al.  Conformational rearrangements in and twisting of a single molecule , 2001 .

[43]  M. Bawendi,et al.  Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots. , 2000, Physical review letters.

[44]  Wild,et al.  Nonclassical photon statistics in single-molecule fluorescence at room temperature , 2000, Physical review letters.

[45]  N. F. van Hulst,et al.  Time-varying triplet state lifetimes of single molecules , 1999 .

[46]  Andreas Herrmann,et al.  Electrochemistry, Spectroscopy and Electrogenerated Chemiluminescence of Perylene, Terrylene, and Quaterrylene Diimides in Aprotic Solution , 1999 .

[47]  W. Moerner,et al.  Illuminating single molecules in condensed matter. , 1999, Science.

[48]  Horia Metiu,et al.  Room-temperature fluorescence characteristics of single dye molecules adsorbed on a glass surface , 1998 .

[49]  H. Langhals,et al.  Intense Dyes through Chromophore-Chromophore Interactions: Bi- and Trichromophoric Perylene-3,4:9,10-bis(dicarboximide)s. , 1998, Angewandte Chemie.

[50]  H. Langhals,et al.  Intensiv‐Farbstoffe durch Chromophor‐ Chromophor‐Wechselwirkungen: di‐ und trifluorophore Perylen‐3,4:9,10‐bis(dicarboximide) , 1998 .

[51]  Paul F. Barbara,et al.  Discrete Intensity Jumps and Intramolecular Electronic Energy Transfer in the Spectroscopy of Single Conjugated Polymer Molecules , 1997 .

[52]  R. Tsien,et al.  On/off blinking and switching behaviour of single molecules of green fluorescent protein , 1997, Nature.

[53]  Talon,et al.  Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. , 1992, Physical review letters.

[54]  W. E. Ford,et al.  Photochemistry of 3,4,9,10-perylenetetracarboxylic dianhydride dyes. 4. Spectroscopic and redox properties of oxidized and reduced forms of the bis(2,5-di-tert-butylphenyl)imide derivative , 1989 .

[55]  Cook,et al.  Possibility of direct observation of quantum jumps. , 1985, Physical review letters.

[56]  M. D. Schaaf,et al.  Excitonic Behavior of Rhodamine Dimers: A Single-Molecule Study , 2003 .

[57]  H. Löhmannsröben,et al.  Photoinduced charge recombination reactions of a perylene dye in acetonitrile , 1999 .

[58]  M. Kasha,et al.  The exciton model in molecular spectroscopy , 1965 .