Notes on the Complexity of Switching Networks

There are various complexity measures for switching networks and communication networks in general. These measures include, but not limited to, the number of switching components, the delay time of signal propagating through the network, the complexity of path selection algorithms, and the complexity of physically designing the network. This chapter surveys the study of the first measure, and partially the second measure. It is conceivable that the number of switching components, or the “size” of a network, affects directly the third and fourth measures.

[1]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Jaikumar Radhakrishnan,et al.  Bounds for Dispersers, Extractors, and Depth-Two Superconcentrators , 2000, SIAM J. Discret. Math..

[4]  A. Nilli On the second eigenvalue of a graph , 1991 .

[5]  Frank K. Hwang,et al.  A two-stage network with dual partial concentrators , 1993, Networks.

[6]  Nicholas Pippenger,et al.  On Rearrangeable and Non-Blocking Switching Networks , 1978, J. Comput. Syst. Sci..

[7]  Moshe Morgenstern,et al.  Natural bounded concentrators , 1995, Comb..

[8]  Abraham Waksman,et al.  A Permutation Network , 1968, JACM.

[9]  Noga Alon,et al.  On the second eigenvalue of a graph , 1991, Discret. Math..

[10]  Leslie G. Valiant,et al.  Graph-Theoretic Properties in computational Complexity , 1976, J. Comput. Syst. Sci..

[11]  Endre Szemerédi,et al.  On the second eigenvalue of random regular graphs , 1989, STOC '89.

[12]  Frank K. Hwang,et al.  The Capacity of the Subarray Partial Concentrators , 1992, Discret. Appl. Math..

[13]  Ahmet Ali Öçal On the Upper Bounds for Permanents , 2003 .

[14]  Xiao-Dong Hu,et al.  An Improved Upper Bound for the Subarray Partial Concentrators , 1992, Discret. Appl. Math..

[15]  M. Eichler,et al.  Quaternäre quadratische Formen und die Riemannsche Vermutung fÜr die Kongruenzzetafunktion , 1954 .

[16]  A. Joel On permutation switching networks , 1968 .

[17]  M. Murty Ramanujan Graphs , 1965 .

[18]  David G. Cantor,et al.  On non-blocking switching networks , 1971, Networks.

[19]  Nieuw Archief voor Wiskunde , 1892 .

[20]  Yuval Roichman,et al.  Expansion Properties of Cayley Graphs of the Alternating Groups , 1997, J. Comb. Theory, Ser. A.

[21]  Nabil Kahale,et al.  Eigenvalues and expansion of regular graphs , 1995, JACM.

[22]  Nicholas Pippenger,et al.  Superconcentrators of Depth 2 , 1982, J. Comput. Syst. Sci..

[23]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[24]  Sartaj Sahni,et al.  Parallel permutation and sorting algorithms and a new generalized connection network , 1982, JACM.

[25]  Aaron D. Wyner,et al.  Memory Requirements in a Telephone Exchange , 1993 .

[26]  Pavel Pudlák,et al.  Communication in bounded depth circuits , 1994, Comb..

[27]  David G. Kirkpatrick,et al.  Some Graph-Colouring Theorems with Applications to Generalized Connection Networks , 1985 .

[28]  D. Spielman,et al.  Expander codes , 1996 .

[29]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[30]  Endre Szemerédi,et al.  A Tribute to Paul Erdős: Generating expanders from two permutations , 1990 .

[31]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[32]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[33]  M. Buck Expanders and diffusers , 1986 .

[34]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[35]  Gerald M. Masson,et al.  Generalized multi-stage connection networks , 1972, Networks.

[36]  F. Chung On concentrators, superconcentrators, generalizers, and nonblocking networks , 1979, The Bell System Technical Journal.

[37]  Avi Wigderson,et al.  Expanders That Beat the Eigenvalue Bound: Explicit Construction and Applications , 1993, Comb..

[38]  Nicholas Pippenger,et al.  A New Lower Bound for the Number of Switches in Rearrangeable Networks , 1980, SIAM J. Algebraic Discret. Methods.

[39]  A. Yao,et al.  Rearrangeable Networks with Limited Depth , 1982 .

[40]  Moshe Morgenstern Ramanujan Diagrams , 1994, SIAM J. Discret. Math..

[41]  Z. Galil,et al.  Explicit constructions of linear size superconcentrators , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[42]  M. Pinsker,et al.  On the complexity of a concentrator , 1973 .

[43]  Miklós Ajtai Recursive construction for 3-regular expanders , 1994, Comb..

[44]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[45]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[46]  Leslie G. Valiant,et al.  Shifting Graphs and Their Applications , 1976, J. ACM.

[47]  Roy Meshulam,et al.  A Geometric Construction of a Superconcentrator of Depth 2 , 1984, Theor. Comput. Sci..

[48]  Nicholas Pippenger Self-Routing Superconcentrators , 1996, J. Comput. Syst. Sci..

[49]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[50]  Noga Alon,et al.  Superconcentrators of Depths 2 and 3; Odd Levels Help (Rarely) , 1994, J. Comput. Syst. Sci..

[51]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[52]  Leslie G. Valiant,et al.  On non-linear lower bounds in computational complexity , 1975, STOC.

[53]  Noga Alon Eigenvalues, geometric expanders and sorting in rounds , 1985 .

[54]  Michael Doob,et al.  Spectra of graphs , 1980 .

[55]  Akira Maruoka,et al.  Expanders obtained from affine transformations , 1985, STOC '85.

[56]  Henryk Minc,et al.  Upper bounds for permanents of $\left( {0,\,1} \right)$-matrices , 1963 .

[57]  Charles Clos,et al.  A study of non-blocking switching networks , 1953 .

[58]  Andrei Z. Broder,et al.  On the second eigenvalue of random regular graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[59]  Joel Friedman A lower bound on strictly non-blocking networks , 1988, Comb..

[60]  Noga Alon,et al.  Eigenvalues, geometric expanders, sorting in rounds, and ramsey theory , 1986, Comb..

[61]  F. Bien Constructions of telephone networks by group representations , 1989 .

[62]  Robert E. Tarjan,et al.  Correction: Space Bounds for a Game on Graphs , 1977, Math. Syst. Theory.

[63]  J. Igusa,et al.  Fibre Systems of Jacobian Varieties , 1956 .

[64]  Daniel A. Spielman,et al.  Constructing Error-Correcting Codes from Expander Graphs , 1999 .

[65]  V. Benes,et al.  Mathematical Theory of Connecting Networks and Telephone Traffic. , 1966 .

[66]  Frank Hwang,et al.  The Mathematical Theory of Nonblocking Switching Networks , 1998 .

[67]  W. Ames Mathematics in Science and Engineering , 1999 .

[68]  Avi Wigderson,et al.  Superconcentrators, generalizers and generalized connectors with limited depth , 1983, STOC.

[69]  Leslie G. Valiant,et al.  Size Bounds for Superconcentrators , 1983, Theor. Comput. Sci..

[70]  Paul Feldman,et al.  Wide-Sense Nonblocking Networks , 1988, SIAM J. Discret. Math..

[71]  Dana Angluin,et al.  A Note on a Construction of Margulis , 1979, Inf. Process. Lett..

[72]  Noga Alon,et al.  Better Expanders and Superconcentrators , 1987, J. Algorithms.

[73]  Moshe Morgenstern,et al.  Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.

[74]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[75]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[76]  Joseph Yu Hui,et al.  Switching and Traffic Theory for Integrated Broadband Networks , 1990 .

[77]  Alexander Lubotzky,et al.  Cayley graphs: eigenvalues, expanders and random walks , 1995 .

[78]  Oliver Vornberger,et al.  The Complexity of Testing Whether a Graph is a Superconcentrator , 1981, Inf. Process. Lett..

[79]  Robert E. Tarjan,et al.  Space bounds for a game on graphs , 1976, STOC '76.

[80]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[81]  J. Igusa,et al.  Fibre Systems of Jacobian Varieties: (III. Fibre Systems of Elliptic Curves) , 1959 .