Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants

[1]  Rommie E. Amaro,et al.  SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma , 2021, Proceedings of the National Academy of Sciences.

[2]  Ilya J. Finkelstein,et al.  Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes , 2021, Science.

[3]  T. Ndung’u,et al.  Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma , 2021, Nature.

[4]  William T. Harvey,et al.  Author Correction: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies , 2021, Nature.

[5]  D. Ho,et al.  Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 , 2021, Nature.

[6]  M. Nussenzweig,et al.  mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants , 2021, Nature.

[7]  G. Haidar,et al.  Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape , 2021, Science.

[8]  A. Sigal,et al.  Sixteen novel lineages of SARS-CoV-2 in South Africa , 2021, Nature Medicine.

[9]  Graham W. Taylor,et al.  SARS-CoV-2 evolution during treatment of chronic infection , 2021, Nature.

[10]  Vineet D. Menachery,et al.  Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis , 2021, Nature.

[11]  T. Fülöp,et al.  Immunosuppression in kidney transplant recipients with COVID-19 infection – where do we stand and where are we heading? , 2021, Renal failure.

[12]  Rommie E. Amaro,et al.  SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma , 2020, bioRxiv.

[13]  William L. Hamilton,et al.  Treatment of COVID-19 with remdesivir in the absence of humoral immunity: a case report , 2020, Nature Communications.

[14]  W. P. Duprex,et al.  Natural deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape , 2020, bioRxiv.

[15]  Gaurav D. Gaiha,et al.  Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host , 2020, The New England journal of medicine.

[16]  E. Fischer,et al.  Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer , 2020, Cell.

[17]  C. Cordon-Cardo,et al.  Robust neutralizing antibodies to SARS-CoV-2 infection persist for months , 2020, Science.

[18]  M. Beltramello,et al.  Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology , 2020, Cell.

[19]  Sarah K. Hilton,et al.  Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition , 2020, bioRxiv.

[20]  S. Lehrer,et al.  Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2 , 2020, In Vivo.

[21]  Shamus P. Keeler,et al.  SARS-CoV-2 infection of hACE2 transgenic mice causes severe lung inflammation and impaired function , 2020, Nature Immunology.

[22]  C. Rice,et al.  Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants , 2020, bioRxiv.

[23]  G. Zimmer,et al.  Rapid Quantification of SARS-CoV-2-Neutralizing Antibodies Using Propagation-Defective Vesicular Stomatitis Virus Pseudotypes , 2020, Vaccines.

[24]  S. Rowland-Jones,et al.  Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus , 2020, Cell.

[25]  Samir Bhatt,et al.  Evolution and epidemic spread of SARS-CoV-2 in Brazil , 2020, Science.

[26]  Anton Nekrutenko,et al.  The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update , 2020, Nucleic Acids Res..

[27]  P. Lemey,et al.  Temporal signal and the phylodynamic threshold of SARS-CoV-2 , 2020, bioRxiv.

[28]  Joy Y. Feng,et al.  Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency , 2020, The Journal of Biological Chemistry.

[29]  D. Jans,et al.  The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro , 2020, Antiviral Research.

[30]  P. Vollmar,et al.  Virological assessment of hospitalized patients with COVID-2019 , 2020, Nature.

[31]  Young-Jun Park,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[32]  P. Knolle,et al.  TCF1+ hepatitis C virus-specific CD8+ T cells are maintained after cessation of chronic antigen stimulation , 2017, Nature Communications.

[33]  John Chilton,et al.  The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update , 2016, Nucleic Acids Res..

[34]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[35]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[36]  G. Zimmer,et al.  A Vesicular Stomatitis Virus Replicon-Based Bioassay for the Rapid and Sensitive Determination of Multi-Species Type I Interferon , 2011, PloS one.

[37]  H. Niwa,et al.  Efficient selection for high-expression transfectants with a novel eukaryotic vector. , 1991, Gene.

[38]  O. Lund,et al.  Access the most recent version at doi: 10.1110/ps.0239403 References , 2002 .

[39]  D. C. Henckel,et al.  Case report. , 1995, Journal.