Generalized Price’s law on fractional-order asymptotically flat stationary spacetimes
暂无分享,去创建一个
[1] M. Tohaneanu,et al. Price's Law on Nonstationary Space-Times , 2011, 1104.5437.
[2] M. Tohaneanu,et al. Strichartz Estimates on Schwarzschild Black Hole Backgrounds , 2008, 0802.3942.
[3] Arne Jensen,et al. Spectral properties of Schrödinger operators and time-decay of the wave functions , 1979 .
[4] R. Price,et al. Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations , 1972 .
[5] M. Zworski,et al. Resolvent Estimates for Normally Hyperbolic Trapped Sets , 2010, 1003.4640.
[6] D. Tataru,et al. Decay estimates for variable coefficient wave equations in exterior domains , 2008, 0806.3409.
[7] I. Rodnianski,et al. A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds , 2008, 0805.4309.
[8] Richard B. Melrose,et al. The Atiyah-Patodi-Singer Index Theorem , 1993 .
[9] Dejan Gajic,et al. Price's law and precise late-time asymptotics for subextremal Reissner-Nordstr\"om black holes , 2021 .
[10] K. Morgan. The effect of metric behavior at spatial infinity on pointwise wave decay in the asymptotically flat stationary setting , 2020, American Journal of Mathematics.
[11] D. Tataru,et al. Local energy decay for scalar fields on time dependent non-trapping backgrounds , 2017, American Journal of Mathematics.
[12] Wilhelm Schlag,et al. A proof of Price's Law on Schwarzschild black hole manifolds for all angular momenta , 2009, 0908.4292.
[13] P. Hintz. A Sharp Version of Price’s Law for Wave Decay on Asymptotically Flat Spacetimes , 2020, Communications in Mathematical Physics.
[14] Shi-Zhuo Looi. Pointwise decay for the wave equation on nonstationary spacetimes , 2021 .
[15] S. Aretakis,et al. Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes , 2016, 1612.01566.
[16] Mihalis Dafermos,et al. The Red-shift effect and radiation decay on black hole spacetimes , 2005 .
[17] Dietrich Hafner,et al. Local Energy Decay for Several Evolution Equations on Asymptotically Euclidean Manifolds , 2010, 1008.2357.
[18] R. Melrose,et al. Elliptic Operators of Totally Characteristic Type , 1983 .
[19] S. Alinhac. On the Morawetz-Keel-Smith-Sogge Inequality for the Wave Equation on a Curved Background , 2006 .
[20] I. Rodnianski,et al. Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case |a| < M , 2014, 1402.7034.
[21] Jason Metcalfe,et al. Long-Time Existence of Quasilinear Wave Equations Exterior to Star-Shaped Obstacles via Energy Methods , 2006, SIAM J. Math. Anal..
[22] J. Bony,et al. Improved local energy decay for the wave equation on asymptotically Euclidean odd dimensional manifolds in the short range case , 2011, Journal of the Institute of Mathematics of Jussieu.
[23] C. Sogge,et al. Concerning the wave equation on asymptotically Euclidean manifolds , 2008, 0901.0022.
[24] I. Rodnianski,et al. Lectures on black holes and linear waves , 2008, 0811.0354.
[25] L. Andersson,et al. Hidden symmetries and decay for the wave equation on the Kerr spacetime , 2009, 0908.2265.
[26] D. Tataru,et al. Global parametrices and dispersive estimates for variable coefficient wave equations , 2007, 0707.1191.
[27] R. Melrose. Transformation of boundary problems , 1981 .
[28] Jan Sbierski. Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes , 2013, 1311.2477.
[29] Andrew Hassell,et al. Resolvent at low energy III: The spectral measure , 2010, 1009.3084.
[30] J. Wunsch. Resolvent estimates with mild trapping , 2012, 1209.0843.
[31] S. Yau,et al. Decay of Solutions of the Wave Equation in the Kerr Geometry , 2005, gr-qc/0504047.
[32] Dejan Gajic,et al. Late-time tails and mode coupling of linear waves on Kerr spacetimes , 2021, Advances in Mathematics.
[33] Cathleen S. Morawetz,et al. The decay of solutions of the exterior initial-boundary value problem for the wave equation , 1961 .
[34] I. Rodnianski,et al. A new physical-space approach to decay for the wave equation with applications to black hole spacetimes , 2009, 0910.4957.
[35] R. Melrose. Spectral and Scattering Theory for the Laplacian on Asymptotically Euclidian Spaces , 2020, Spectral and scattering theory.
[36] J. Ralston. Solutions of the wave equation with localized energy , 1969 .
[37] D. Tataru. Local decay of waves on asymptotically flat stationary space-times , 2009, 0910.5290.
[38] R. Booth,et al. Localized energy for wave equations with degenerate trapping , 2017, Mathematical Research Letters.
[39] N. Burq. Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .
[40] J. Luk. A Vector Field Method Approach to Improved Decay for Solutions to the Wave Equation on a Slowly Rotating Kerr Black Hole , 2010, 1009.0671.
[41] A. Vasy. Resolvent near zero energy on Riemannian scattering (asymptotically conic) spaces, a Lagrangian approach , 2018, Pure and Applied Analysis.