GPU-powered tools boost molecular visualization

Recent advances in experimental structure determination provide a wealth of structural data on huge macromolecular assemblies such as the ribosome or viral capsids, available in public databases. Further structural models arise from reconstructions using symmetry orders or fitting crystal structures into low-resolution maps obtained by electron-microscopy or small angle X-ray scattering experiments. Visual inspection of these huge structures remains an important way of unravelling some of their secrets. However, such visualization cannot conveniently be carried out using conventional rendering approaches, either due to performance limitations or due to lack of realism. Recent developments, in particular drawing benefit from the capabilities of Graphics Processing Units (GPUs), herald the next generation of molecular visualization solutions addressing these issues. In this article, we present advances in computer science and visualization that help biologists visualize, understand and manipulate large and complex molecular systems, introducing concepts that remain little-known in the bioinformatics field. Furthermore, we compile currently available software and methods enhancing the shape perception of such macromolecular assemblies, for example based on surface simplification or lighting ameliorations.

[1]  Amitabh Varshney,et al.  Representing thermal vibrations and uncertainty in molecular surfaces , 2002, IS&T/SPIE Electronic Imaging.

[2]  Thomas Ertl,et al.  Parallel computation and interactive visualization of time-varying solvent excluded surfaces , 2010, BCB '10.

[3]  Daniel Baum,et al.  Accelerated Visualization of Dynamic Molecular Surfaces , 2010, Comput. Graph. Forum.

[4]  Joseph R Weber,et al.  ProteinShader: illustrative rendering of macromolecules , 2009, BMC Structural Biology.

[5]  J. Ottino Is a picture worth 1,000 words? , 2003, Nature.

[6]  Zygmunt S Derewenda,et al.  Rational protein crystallization by mutational surface engineering. , 2004, Structure.

[7]  Alexandre Gillet,et al.  Tangible interfaces for structural molecular biology. , 2005, Structure.

[8]  Ivan Viola,et al.  Two-Level Approach to Efficient Visualization of Protein Dynamics , 2007, IEEE Transactions on Visualization and Computer Graphics.

[9]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[10]  R C Stevens,et al.  High-throughput protein crystallization. , 2000, Current opinion in structural biology.

[11]  M F Sanner,et al.  Python: a programming language for software integration and development. , 1999, Journal of molecular graphics & modelling.

[12]  Thomas Ertl,et al.  GPU-based Visualisation of Protein Secondary Structure , 2008, TPCG.

[13]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[14]  U Heinemann,et al.  High-throughput three-dimensional protein structure determination. , 2001, Current opinion in biotechnology.

[15]  Peter Kuhn,et al.  C-ME: A 3D Community-Based, Real-Time Collaboration Tool for Scientific Research and Training , 2008, PloS one.

[16]  Lorenzo Dematté,et al.  GPU computing for systems biology , 2010, Briefings Bioinform..

[17]  Chandrajit L. Bajaj,et al.  TexMol: interactive visual exploration of large flexible multi-component molecular complexes , 2004, IEEE Visualization 2004.

[18]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[19]  Bernd Hamann,et al.  Interactive protein manipulation , 2003, IEEE Visualization, 2003. VIS 2003..

[20]  Thomas Ertl,et al.  GPU-powered tools boost molecular visualization 691 , 2011 .

[21]  H. Wolfson,et al.  Determining macromolecular assembly structures by molecular docking and fitting into an electron density map , 2010, Proteins.

[22]  Randima Fernando,et al.  The CG Tutorial: The Definitive Guide to Programmable Real-Time Graphics , 2003 .

[23]  David S Goodsell,et al.  Visual methods from atoms to cells. , 2005, Structure.

[24]  Michael Gleicher,et al.  GRAPE: GRaphical Abstracted Protein Explorer , 2010, Nucleic Acids Res..

[25]  Philipp Slusallek,et al.  Measuring properties of molecular surfaces using ray casting , 2010, 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW).

[26]  Stefan Birmanns,et al.  GPU-accelerated visualization of protein dynamics in ribbon mode , 2011, Electronic Imaging.

[27]  Rodrigo de Toledo,et al.  Extending the graphic pipeline with new GPU-accelerated primitives , 2005 .

[28]  Thomas D. Goddard,et al.  Visualization software for molecular assemblies. , 2007, Current opinion in structural biology.

[29]  Martin Falk,et al.  Visualization of signal transduction processes in the crowded environment of the cell , 2009, 2009 IEEE Pacific Visualization Symposium.

[30]  Ghislain Deslongchamps,et al.  PostDock: A novel visualization tool for the analysis of molecular docking , 2009 .

[31]  Jason Sanders,et al.  CUDA by example: an introduction to general purpose GPU programming , 2010 .

[32]  Randi J. Rost OpenGL shading language , 2004 .

[33]  Lisa Gralewski,et al.  Theory and Practice of Computer Graphics , 2004 .

[34]  David Baker,et al.  Prediction of the structure of symmetrical protein assemblies , 2007, Proceedings of the National Academy of Sciences.

[35]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[36]  D. Goodsell,et al.  Visualization of macromolecular structures , 2010, Nature Methods.

[37]  Martin Falk,et al.  3D visualization of concentrations from stochastic agent-based signal transduction simulations , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[38]  Tomoyuki Nishita,et al.  GPU‐based Fast Ray Casting for a Large Number of Metaballs , 2008, Comput. Graph. Forum.

[39]  Herbert Edelsbrunner,et al.  Deformable Smooth Surface Design , 1999, Discret. Comput. Geom..

[40]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[41]  Matthieu Chavent,et al.  MetaMol: high-quality visualization of molecular skin surface. , 2008, Journal of molecular graphics & modelling.

[42]  Daniel Baum,et al.  Visualizing dynamic molecular conformations , 2002, IEEE Visualization, 2002. VIS 2002..

[43]  Tim Weyrich,et al.  Eurographics Symposium on Point-based Graphics (2006) Gpu-based Ray-casting of Quadratic Surfaces , 2022 .

[44]  David S Goodsell,et al.  Making the step from chemistry to biology and back. , 2007, Nature chemical biology.

[45]  Hans-Peter Lenhof,et al.  BALLView: An object-oriented molecular visualization and modeling framework , 2005, J. Comput. Aided Mol. Des..

[46]  Klaus Schulten,et al.  GPU-accelerated molecular modeling coming of age. , 2010, Journal of molecular graphics & modelling.

[47]  Thomas Ertl,et al.  Interactive Visualization of Molecular Surface Dynamics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[48]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[49]  Michael Gleicher,et al.  Molecular Surface Abstraction , 2007, IEEE Transactions on Visualization and Computer Graphics.

[50]  Michael Gleicher,et al.  Text Scaffolds for Effective Surface Labeling , 2008, IEEE Transactions on Visualization and Computer Graphics.

[51]  Paolo Cignoni,et al.  Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[52]  Philipp Slusallek,et al.  Real-Time Ray Tracing of Complex Molecular Scenes , 2010, 2010 14th International Conference Information Visualisation.