Mesoporous bioactive glasses: mechanical reinforcement by means of a biomimetic process.

[1]  Larry L. Hench,et al.  An Introduction to Bioceramics , 2013 .

[2]  M. Vallet‐Regí,et al.  Functionalizing mesoporous bioglasses for long-term anti-osteoporotic drug delivery. , 2010, Chemistry.

[3]  María Vallet-Regí,et al.  Sol-gel silica-based biomaterials and bone tissue regeneration. , 2010, Acta biomaterialia.

[4]  P. González,et al.  Influence of the Stabilization Temperature on the Structure of Bioactive Sol–Gel Silicate Glasses , 2010 .

[5]  M. Vallet‐Regí,et al.  Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material. , 2010, Acta biomaterialia.

[6]  Franck Tancret,et al.  Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: Modelling and experiment , 2010 .

[7]  M. Vallet‐Regí Nanostructured mesoporous silica matrices in nanomedicine , 2010, Journal of internal medicine.

[8]  M. Vallet‐Regí,et al.  Essential Role of Calcium Phosphate Heterogeneities in 2D-Hexagonal and 3D-Cubic SiO2−CaO−P2O5 Mesoporous Bioactive Glasses , 2009 .

[9]  Stefan Kaskel,et al.  Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering , 2008 .

[10]  M. Vallet‐Regí,et al.  Multinuclear Solid-State NMR Studies of Ordered Mesoporous Bioactive Glasses , 2008 .

[11]  María Vallet-Regí,et al.  Mesoporous Materials for Drug Delivery , 2008 .

[12]  Seung-eon Kim,et al.  Design and preparation of bioactive glasses with hierarchical pore networks. , 2007, Chemical communications.

[13]  M. Vallet‐Regí,et al.  Revisiting silica based ordered mesoporous materials: medical applications , 2006 .

[14]  William L. Warren,et al.  Direct Writing of Three‐Dimensional Polymer Scaffolds Using Colloidal Gels , 2006 .

[15]  D. Zhao,et al.  The in-vitro bioactivity of mesoporous bioactive glasses. , 2006, Biomaterials.

[16]  María Vallet-Regí,et al.  Ordered Mesoporous Bioactive Glasses for Bone Tissue Regeneration , 2006 .

[17]  D. Kaplan,et al.  Porosity of 3D biomaterial scaffolds and osteogenesis. , 2005, Biomaterials.

[18]  S. Hollister Porous scaffold design for tissue engineering , 2005, Nature materials.

[19]  Margam Chandrasekaran,et al.  Rapid prototyping in tissue engineering: challenges and potential. , 2004, Trends in biotechnology.

[20]  Xufeng Zhou,et al.  Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. , 2004, Angewandte Chemie.

[21]  L. Francis,et al.  Effects of materials parameters on mineralization and degradation of sol-gel bioactive glasses with 3D-ordered macroporous structures. , 2003, Journal of biomedical materials research. Part A.

[22]  Julian R. Jones,et al.  Effect of surfactant concentration and composition on the structure and properties of sol-gel-derived bioactive glass foam scaffolds for tissue engineering , 2003 .

[23]  Larry L. Hench,et al.  Regeneration of trabecular bone using porous ceramics , 2003 .

[24]  M. Vallet‐Regí,et al.  Glasses with Medical Applications , 2003 .

[25]  Julian R Jones,et al.  Bioactive sol-gel foams for tissue repair. , 2002, Journal of biomedical materials research.

[26]  J. Hao,et al.  Preparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals. , 2001, Biomaterials.

[27]  M. Vallet‐Regí,et al.  Biomimetic Apatite Deposition on Calcium Silicate Gel Glasses , 2001 .

[28]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[29]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[30]  A. Clark,et al.  Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro. , 1994, Journal of biomedical materials research.

[31]  R. Happonen,et al.  BIOACTIVE GLASSES: CLINICAL APPLICATIONS , 1993 .

[32]  L L Hench,et al.  An investigation of bioactive glass powders by sol-gel processing. , 1991, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[33]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of biomedical materials research.

[34]  Warren Ld,et al.  An investigation of Bioglass powders: quality assurance test procedure and test criteria. , 1989 .

[35]  L L Hench,et al.  Surface-active biomaterials. , 1984, Science.

[36]  Antonius Rohlmann,et al.  Material properties of femoral cancellous bone in axial loading , 1980, Archives of orthopaedic and traumatic surgery.

[37]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[38]  J. Bouler,et al.  A new technological procedure using sucrose as porogen compound to manufacture porous biphasic calcium phosphate ceramics of appropriate micro- and macrostructure , 2010 .

[39]  Rena Bizios,et al.  Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. , 2005, Journal of biomedical materials research. Part A.

[40]  G. Bergmann,et al.  Material properties of femoral cancellous bone in axial loading , 2004, Archives of orthopaedic and traumatic surgery.

[41]  A. Clark,et al.  An investigation of Bioglass powders: quality assurance test procedure and test criteria. , 1989, Journal of biomedical materials research.

[42]  A. Burstein,et al.  The elastic and ultimate properties of compact bone tissue. , 1975, Journal of biomechanics.

[43]  G. C. Wall THE SOL-GEL PROCESS , 1965 .