Viterbi-Based Efficient Test Data Compression

This paper presents a Viterbi-based test compression algorithm/architecture that provides high encoding efficiency and scalability with respect to the number of test channels. The proposed scheme finds a set of compressed test vectors using the Viterbi algorithm instead of solving linear equations. By assigning a cost function to the branch metric of the Viterbi algorithm, an optimal compressed vector is selected among the possible solution set. This feature enables high flexibility to combine various test requirements such as low-power compression and/or improving capability to repeat test patterns. The proposed on-chip decompressor follows the structure of Viterbi encoders which require only one input channel. Experimental results on test volume show improvement on all ISCAS89 benchmark circuits (19.32% reduction on the average) compared to previous test data compression architectures. The proposed scheme also yields efficient power-dissipation/volume tradeoff.

[1]  H. K. Lee,et al.  HOPE: an efficient parallel fault simulator , 1992, [1992] Proceedings 29th ACM/IEEE Design Automation Conference.

[2]  Wenlong Wei,et al.  Cost Efficient Methods to Improve Performance of Broadcast Scan , 2008, 2008 17th Asian Test Symposium.

[3]  Nur A. Touba,et al.  Survey of Test Vector Compression Techniques , 2006, IEEE Design & Test of Computers.

[4]  Sarita Thakar,et al.  On the generation of test patterns for combinational circuits , 1993 .

[5]  Krishnendu Chakrabarty,et al.  Frequency-directed run-length (FDR) codes with application to system-on-a-chip test data compression , 2001, Proceedings 19th IEEE VLSI Test Symposium. VTS 2001.

[6]  Nur A. Touba,et al.  Static compaction techniques to control scan vector power dissipation , 2000, Proceedings 18th IEEE VLSI Test Symposium.

[7]  Nur A. Touba,et al.  Improving Linear Test Data Compression , 2006, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Nur A. Touba,et al.  Reducing test data volume using LFSR reseeding with seed compression , 2002, Proceedings. International Test Conference.

[9]  Janusz Rajski,et al.  Low Power Scan Shift and Capture in the EDT Environment , 2008, 2008 IEEE International Test Conference.

[10]  Nur A. Touba,et al.  Controlling peak power during scan testing , 2002, Proceedings 20th IEEE VLSI Test Symposium (VTS 2002).

[11]  Jr. G. Forney,et al.  Viterbi Algorithm , 1973, Encyclopedia of Machine Learning.

[12]  Nur A. Touba,et al.  Low power test data compression based on LFSR reseeding , 2004, IEEE International Conference on Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings..

[13]  Alex Orailoglu,et al.  Test volume and application time reduction through scan chain concealment , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[14]  Hans-Joachim Wunderlich,et al.  Reusing Scan Chains for Test Pattern Decompression , 2002, J. Electron. Test..

[15]  Nilanjan Mukherjee,et al.  Embedded deterministic test , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[16]  Brion L. Keller,et al.  Extending OPMISR beyond 10x Scan Test Efficiency , 2002, IEEE Des. Test Comput..

[17]  B. Koneman,et al.  LFSR-Coded Test Patterns for Scan Designs , 1993 .

[18]  Krishnendu Chakrabarty,et al.  Deviation-Based LFSR Reseeding for Test-Data Compression , 2009, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  Jocelyn Moreau,et al.  Running scan test on three pins: yes we can! , 2009, 2009 International Test Conference.

[20]  Janusz Rajski,et al.  Ring generators - new devices for embedded test applications , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[21]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[22]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.