On the local well-posedness of the nonlinear heat equation associated to the fractional Hermite operator in modulation spaces

[1]  L. Rodino,et al.  Time-Frequency Analysis of Operators , 2020 .

[2]  Divyang G. Bhimani The Nonlinear Heat equations with fractional: Laplacian $\&$ harmonic oscillator in modulation spaces , 2019 .

[3]  Weichao Guo,et al.  Characterizations of Some Properties on Weighted Modulation and Wiener Amalgam Spaces , 2019, Michigan Mathematical Journal.

[4]  E. Cordero,et al.  Almost Diagonalization of $$\tau $$τ-Pseudodifferential Operators with Symbols in Wiener Amalgam and Modulation Spaces , 2018, 1802.10314.

[5]  Divyang G. Bhimani,et al.  Hermite Multipliers on Modulation Spaces , 2017, Springer Proceedings in Mathematics & Statistics.

[6]  E. Cordero,et al.  Born-Jordan Pseudo-Differential Operators with Symbols in the Shubin Classes , 2016, 1603.03403.

[7]  F. Nicola Phase space analysis of semilinear parabolic equations , 2013, 1308.1909.

[8]  L. Rodino,et al.  Gabor Representations of evolution operators , 2012, 1209.0945.

[9]  Baoxiang Wang,et al.  Harmonic Analysis Method for Nonlinear Evolution Equations, I , 2011 .

[10]  M. D. Gosson Symplectic Methods in Harmonic Analysis and in Mathematical Physics , 2011 .

[11]  E. Cordero,et al.  The Cauchy problem for the vibrating plate equation in modulation spaces , 2010, 1004.3686.

[12]  Viorel Catană The Heat Equation for the Generalized Hermite and the Generalized Landau Operators , 2010 .

[13]  E. Cordero,et al.  Remarks on Fourier multipliers and applications to the Wave equation , 2008, 0802.2801.

[14]  K. Grōchenig,et al.  Banach algebras of pseudodifferential operators and their almost diagonalization , 2007, 0710.1989.

[15]  Baoxiang Wang,et al.  Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations , 2007 .

[16]  K. Okoudjou,et al.  Local well‐posedness of nonlinear dispersive equations on modulation spaces , 2007, 0704.0833.

[17]  Luke G. Rogers,et al.  Unimodular Fourier multipliers for modulation spaces , 2006, math/0609097.

[18]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[19]  Zhao Li-feng,et al.  Isometric decomposition operators, function spaces Ep,qλ and applications to nonlinear evolution equations , 2006 .

[20]  M. W. Wong Weyl Transforms, the Heat Kernel and Green Function of a Degenerate Elliptic Operator , 2005 .

[21]  M. W. Wong The heat equation for the Hermite operator on the Heisenberg group , 2005 .

[22]  Karlheinz Gröchenig,et al.  Time-Frequency Analysis of Sjöstrand's Class , 2004 .

[23]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[24]  Michael Ruzhansky,et al.  Analysis and Partial Differential Equations: Perspectives from Developing Countries , 2019, Springer Proceedings in Mathematics & statistics.

[25]  L. Rodino,et al.  Global Pseudo-differential calculus on Euclidean spaces , 2010 .

[26]  Baoxiang Wang,et al.  The global Cauchy problem for the NLS and NLKG with small rough data , 2007 .

[27]  H. Feichtinger Modulation Spaces on Locally Compact Abelian Groups , 2003 .

[28]  Richard Rochberg,et al.  Pseudodifferential operators, Gabor frames, and local trigonometric bases , 1998 .

[29]  S. Thangavelu Lectures on Hermite and Laguerre expansions , 1993 .

[30]  B. Helffer Théorie spectrale pour des opérateurs globalement elliptiques , 1984 .