Estimating tree density in oak savanna-like lsquo;dehesa’ of southern Spain from SPOT data

Abstract The main objective of this study was to establish a method of estimating tree density in savanna-like vegetation systems using the highest spatial resolution available from satellite data (SPOT-1 panchromatic = 10  m resolution) based on the assumption that for sparse trees on a contrasting herbaceous background, spatial filters may provide a direct mapping of tree cover. The study was performed in the ‘dehesas’ oak-woodland of southern Spain. This particular landscape is characterized by the presence of scattered evergreen oak trees (Quercus ilex and Q. suber) whose density ranges from 0 to 80 even-aged mature trees per hectare which gives the appearance of a savanna-like vegetation. Tree density can be accurately estimated by SPOT-1 panchromatic data after numerical filtering. This method allows the mapping of tree density of the dehesas, a key parameter reflecting the functional vegetation-soil-climate equilibrium which exists for both woody and herbaceous strata.

[1]  C. Tucker,et al.  Satellite remote sensing of rangelands in Botswana II. NOAA AVHRR and herbaceous vegetation , 1986 .

[2]  P. S. Eagleson,et al.  Estimation of subpixel vegetation cover using red-infrared scattergrams , 1990 .

[3]  Serge Rambal,et al.  Testing an area-weighted model for albedo or surface temperature of mixed pixels in Mediterranean woodlands. , 1990 .

[4]  Compton J. Tucker,et al.  Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel - 1980-1984 , 1985 .

[5]  M. Gilabert,et al.  A simple geometrical model for analysing the spectral response of a citrus canopy using satellite images. , 1990 .

[6]  C. Justice,et al.  Analysis of the phenology of global vegetation using meteorological satellite data , 1985 .

[7]  C. Tucker,et al.  Satellite remote sensing of total dry matter production in the Senegalese Sahel , 1983 .

[8]  J. Malingreau Global vegetation dynamics - Satellite observations over Asia , 1986 .

[9]  J. W. Kidson,et al.  Determination of seasonal and interannual variation in New Zealand pasture growth from NOAA-7 data , 1985 .

[10]  C. Perry,et al.  Functional equivalence of spectral vegetation indices , 1984 .

[11]  R. Dean Graetz,et al.  Remote Sensing of Terrestrial Ecosystem Structure: An Ecologist’s Pragmatic View , 1990 .

[12]  Alan H. Strahler,et al.  On the nature of models in remote sensing , 1986 .

[13]  Christopher O. Justice,et al.  Monitoring the grasslands of the Sahel using NOAA AVHRR data: Niger 1983 , 1986 .

[14]  Wayne Niblack,et al.  An introduction to digital image processing , 1986 .

[15]  C. Tucker,et al.  Satellite remote sensing of primary production , 1986 .

[16]  S. Prince Measurement of canopy interception of solar radiation by stands of trees in sparsely wooded savanna , 1987 .

[17]  Dennis D. Baldocchi,et al.  Solar radiation within an oak—hickory forest: an evaluation of the extinction coefficients for several radiation components during fully-leafed and leafless periods , 1984 .

[18]  P. S. Eagleson,et al.  Water‐Limited Equilibrium of Savanna Vegetation Systems , 1985 .

[19]  G. Badhwar,et al.  Crop emergence date determination from spectral data , 1980 .

[20]  P. Hiernaux,et al.  Suivi du développement végétal au cours de l'été 1984 dans le Sahel Malien , 1986 .

[21]  S. Prince,et al.  Satellite remote sensing of rangelands in Botswana. I: Landsat MSS and herbaceous vegetation , 1986 .

[22]  P. S. Eagleson,et al.  The structure of red-infrared scattergrams of semivegetated landscapes , 1989 .

[23]  Caractérisation de formations végétales mediterranéennes à partir de données ‘Thematic Mapper’ Une étude de cas en Andalousie (Espagne) , 1987 .