Compact quantum metric spaces from free graph algebras
暂无分享,去创建一个
David Penneys | Konrad Aguilar | Michael Hartglass | Michael Hartglass | David Penneys | Konrad Aguilar
[1] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[2] Hanfeng Li,et al. On Gromov-Hausdorff convergence for operator metric spaces , 2004, math/0411157.
[3] I. Benjamini,et al. Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.
[4] Random matrices, free probability, planar algebras and subfactors , 2007, 0712.2904.
[5] Vaughan F. R. Jones. Planar algebras , 2021, New Zealand Journal of Mathematics.
[6] Marc A. Rieffel,et al. Metrics on State Spaces , 1999 .
[7] Vaughan F. R. Jones. Index for subfactors , 1983 .
[8] Frédéric Latrémolière. The Quantum Gromov-Hausdorff Propinquity , 2013, 1302.4058.
[9] S. Popa. Supported by Federal Ministry of Science and Research, AustriaAN AXIOMATIZATION OF THE LATTICE OF HIGHER RELATIVE COMMUTANTS OF A SUBFACTOR , 2001 .
[10] A. Connes. Compact metric spaces, Fredholm modules, and hyperfiniteness , 1989, Ergodic Theory and Dynamical Systems.
[11] D. Shlyakhtenko,et al. AN ORTHOGONAL APPROACH TO THE SUBFACTOR OF A PLANAR ALGEBRA , 2008, 0807.4146.
[12] F. Latrémolière. A Compactness Theorem for The Dual Gromov-Hausdorff Propinquity , 2015, 1501.06121.
[13] Marc A. Rieffel,et al. Metrics on states from actions of compact groups , 1998, Documenta Mathematica.
[14] I. Raeburn,et al. The Toeplitz algebra of a Hilbert bimodule , 1998, math/9806093.
[15] Arnaud Brothier,et al. Rigid C*-tensor categories of bimodules over interpolated free group factors , 2012, 1208.5505.
[16] Frederick M. Goodman,et al. Coxeter graphs and towers of algebras , 1989 .
[17] JENS KAAD,et al. Dynamics of compact quantum metric spaces , 2019, Ergodic Theory and Dynamical Systems.
[18] M. Junge,et al. Harmonic Analysis Approach to Gromov–Hausdorff Convergence for Noncommutative Tori , 2016, 1612.02735.
[19] David Penneys. Unitary dual functors for unitary multitensor categories , 2018, Higher Structures.
[20] Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance , 2001, math/0108005.
[21] On the symmetric enveloping algebra of planar algebra subfactors , 2011, 1105.1721.
[22] Michael Hartglass. Free Product C*-algebras Associated with Graphs, Free Differentials, and Laws of Loops , 2015, Canadian Journal of Mathematics.
[23] H. Wenzl. Quantum groups and subfactors of type B, C, and D , 1990 .
[24] A. Guionnet,et al. A semi-finite algebra associated to a subfactor planar algebra , 2011 .
[25] Zhengwei Liu. Composed inclusions of A3 and A4 subfactors , 2013, 1308.5691.
[26] CONTINUOUS FAMILIES OF HYPERFINITE SUBFACTORS WITH THE SAME STANDARD INVARIANT , 2006, math/0604460.
[27] Fengjun Xu. Standard λ-lattices from quantum groups , 1998 .
[28] Michael Hartglass,et al. Realizations of rigid C*-tensor categories as bimodules over GJS C*-algebras , 2020, 2005.09821.
[29] Konrad Aguilar. AF algebras in the quantum Gromov-Hausdorff propinquity space , 2016, 1612.02404.
[30] S. Popa. Classification of amenable subfactors of type II , 1994 .
[31] V. Jones. Quadratic Tangles in Planar Algebras , 2010, 1007.1158.
[32] Hyperbolic Group C *-Algebras and Free-Product C *-Algebras as Compact Quantum Metric Spaces , 2003, Canadian Journal of Mathematics.
[33] H. Wenzl. Hecke algebras of type A n and subfactors , 1988 .
[34] Michael Hartglass,et al. $C^*$-algebras from planar algebras II: the Guionnet-Jones-Shlyakhtenko $C^*$-algebras , 2014, 1401.2486.
[35] Gromov-Hausdorff Distance for Quantum Metric Spaces , 2000, math/0011063.
[36] Michael Hartglass,et al. C*-algebras from planar algebras I: Canonical C*-algebras associated to a planar algebra , 2014, 1401.2485.
[37] U. Haagerup,et al. Composition of subfactors : New examples of infinite depth subfactors , 1996 .