Compact quantum metric spaces from free graph algebras

Starting with a vertex-weighted pointed graph (Γ, μ, v0), we form the free loop algebra S0 defined in Hartglass-Penneys’ article on canonical C∗-algebras associated to a planar algebra. Under mild conditions, S0 is a non-nuclear simple C∗-algebra with unique tracial state. There is a canonical polynomial subalgebra A ⊂ S0 together with a Dirac number operator N such that (A,LA,N) is a spectral triple. We prove the Haagerup-type bound of Ozawa-Rieffel to verify (S0, A,N) yields a compact quantum metric space in the sense of Rieffel. We give a weighted analog of Benjamini-Schramm convergence for vertex-weighted pointed graphs. As our C∗-algebras are non-nuclear, we adjust the Lip-norm coming from N to utilize the finite dimensional filtration of A. We then prove that convergence of vertex-weighted pointed graphs leads to quantum GromovHausdorff convergence of the associated adjusted compact quantum metric spaces. As an application, we apply our construction to the Guionnet-Jones-Shyakhtenko (GJS) C∗-algebra associated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS C∗-algebras of many infinite families of planar algebras converge in quantum Gromov-Hausdorff distance.

[1]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[2]  Hanfeng Li,et al.  On Gromov-Hausdorff convergence for operator metric spaces , 2004, math/0411157.

[3]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[4]  Random matrices, free probability, planar algebras and subfactors , 2007, 0712.2904.

[5]  Vaughan F. R. Jones Planar algebras , 2021, New Zealand Journal of Mathematics.

[6]  Marc A. Rieffel,et al.  Metrics on State Spaces , 1999 .

[7]  Vaughan F. R. Jones Index for subfactors , 1983 .

[8]  Frédéric Latrémolière The Quantum Gromov-Hausdorff Propinquity , 2013, 1302.4058.

[9]  S. Popa Supported by Federal Ministry of Science and Research, AustriaAN AXIOMATIZATION OF THE LATTICE OF HIGHER RELATIVE COMMUTANTS OF A SUBFACTOR , 2001 .

[10]  A. Connes Compact metric spaces, Fredholm modules, and hyperfiniteness , 1989, Ergodic Theory and Dynamical Systems.

[11]  D. Shlyakhtenko,et al.  AN ORTHOGONAL APPROACH TO THE SUBFACTOR OF A PLANAR ALGEBRA , 2008, 0807.4146.

[12]  F. Latrémolière A Compactness Theorem for The Dual Gromov-Hausdorff Propinquity , 2015, 1501.06121.

[13]  Marc A. Rieffel,et al.  Metrics on states from actions of compact groups , 1998, Documenta Mathematica.

[14]  I. Raeburn,et al.  The Toeplitz algebra of a Hilbert bimodule , 1998, math/9806093.

[15]  Arnaud Brothier,et al.  Rigid C*-tensor categories of bimodules over interpolated free group factors , 2012, 1208.5505.

[16]  Frederick M. Goodman,et al.  Coxeter graphs and towers of algebras , 1989 .

[17]  JENS KAAD,et al.  Dynamics of compact quantum metric spaces , 2019, Ergodic Theory and Dynamical Systems.

[18]  M. Junge,et al.  Harmonic Analysis Approach to Gromov–Hausdorff Convergence for Noncommutative Tori , 2016, 1612.02735.

[19]  David Penneys Unitary dual functors for unitary multitensor categories , 2018, Higher Structures.

[20]  Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance , 2001, math/0108005.

[21]  On the symmetric enveloping algebra of planar algebra subfactors , 2011, 1105.1721.

[22]  Michael Hartglass Free Product C*-algebras Associated with Graphs, Free Differentials, and Laws of Loops , 2015, Canadian Journal of Mathematics.

[23]  H. Wenzl Quantum groups and subfactors of type B, C, and D , 1990 .

[24]  A. Guionnet,et al.  A semi-finite algebra associated to a subfactor planar algebra , 2011 .

[25]  Zhengwei Liu Composed inclusions of A3 and A4 subfactors , 2013, 1308.5691.

[26]  CONTINUOUS FAMILIES OF HYPERFINITE SUBFACTORS WITH THE SAME STANDARD INVARIANT , 2006, math/0604460.

[27]  Fengjun Xu Standard λ-lattices from quantum groups , 1998 .

[28]  Michael Hartglass,et al.  Realizations of rigid C*-tensor categories as bimodules over GJS C*-algebras , 2020, 2005.09821.

[29]  Konrad Aguilar AF algebras in the quantum Gromov-Hausdorff propinquity space , 2016, 1612.02404.

[30]  S. Popa Classification of amenable subfactors of type II , 1994 .

[31]  V. Jones Quadratic Tangles in Planar Algebras , 2010, 1007.1158.

[32]  Hyperbolic Group C *-Algebras and Free-Product C *-Algebras as Compact Quantum Metric Spaces , 2003, Canadian Journal of Mathematics.

[33]  H. Wenzl Hecke algebras of type A n and subfactors , 1988 .

[34]  Michael Hartglass,et al.  $C^*$-algebras from planar algebras II: the Guionnet-Jones-Shlyakhtenko $C^*$-algebras , 2014, 1401.2486.

[35]  Gromov-Hausdorff Distance for Quantum Metric Spaces , 2000, math/0011063.

[36]  Michael Hartglass,et al.  C*-algebras from planar algebras I: Canonical C*-algebras associated to a planar algebra , 2014, 1401.2485.

[37]  U. Haagerup,et al.  Composition of subfactors : New examples of infinite depth subfactors , 1996 .