Experimental visualization of lithium diffusion in LixFePO4.

[1]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[2]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[3]  Jeff Wolfenstine,et al.  Kinetic Study of the Electrochemical FePO 4 to LiFePO 4 Phase Transition , 2007 .

[4]  J. L. Dodd,et al.  Valence fluctuations of 57Fe in disordered Li0.6FePO4 , 2007 .

[5]  M. Yonemura,et al.  Neutron powder diffraction study on the high-temperature phase of K3H(SeO4)2 , 2006 .

[6]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[7]  L. Nazar,et al.  Small polaron hopping in Li(x)FePO4 solid solutions: coupled lithium-ion and electron mobility. , 2006, Journal of the American Chemical Society.

[8]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[9]  Masao Yonemura,et al.  Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.

[10]  Gerbrand Ceder,et al.  Ab initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies , 2006 .

[11]  J. L. Dodd,et al.  Phase Diagram of Li x FePO4 , 2006 .

[12]  J. L. Dodd,et al.  Phase diagram of LixFePO4 , 2006 .

[13]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[14]  Atsuo Yamada,et al.  Phase Change in Li x FePO4 , 2005 .

[15]  Jean-Marie Tarascon,et al.  The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 , 2005 .

[16]  Yukio Morii,et al.  Crystal Structure and Diffusion Path in the Fast Lithium-Ion Conductor La0.62Li0.16TiO3 , 2005 .

[17]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[18]  Y. Miyazaki,et al.  Conduction path and disorder in the fast oxide-ion conductor (La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)O2.8 , 2003 .

[19]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[20]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[21]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[22]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[23]  F. Izumi,et al.  A Rietveld-Analysis Programm RIETAN-98 and its Applications to Zeolites , 2000 .

[24]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[25]  Maximum-Entropy Analysis of the Cubic Phases of KOH and KOD, NaOH and NaOD , 1995 .

[26]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[27]  D. Collins,et al.  Electron density images from imperfect data by iterative entropy maximization , 1982, Nature.

[28]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[29]  S. Gull,et al.  Image reconstruction from incomplete and noisy data , 1978, Nature.