Magnetic induction and plasma impedance in a cylindrical inductive discharge

An inductive radio frequency discharge in the cylindrical configuration is modelled as a transformer with the inductive coil taken as the primary circuit and the plasma as the secondary circuit. The mutual inductance between the primary and secondary circuit, the self-inductance of the plasma and the impedance of the plasma are determined theoretically and related to the properties of the plasma evaluated using a global (volume-averaged) discharge model for argon plasma. The azimuthal electric field and the axial magnetic field profile within an inductive discharge in the cylindrical configuration are determined assuming a parabolic electron density profile.

[1]  H. Eckert Diffusion Theory of the Electrodeless Ring Discharge , 1962 .

[2]  M. H. Clarkson,et al.  Electromagnetic Field in Electrodeless Discharge , 1971 .

[3]  K. A. MacKinnon LXVI. On the origin of the electrodeless discharge , 1929 .

[4]  J. Thomson CI.The electrodeless discharge through gases , 1927 .

[5]  J. Denneman Determination of electromagnetic properties of low-pressure electrodeless inductive discharges , 1990 .

[6]  G. Lister,et al.  Modelling of inductively coupled discharges with internal and external coils , 1992 .

[7]  Robert L. Dewar,et al.  Plasma Physics for Nuclear Fusion , 1979 .

[8]  Tachibana Excitation of the 1s5,1s4, 1s3, and 1s2 levels of argon by low-energy electrons. , 1986, Physical review. A, General physics.

[9]  Lindsay,et al.  Absolute partial and total cross sections for electron-impact ionization of argon from threshold to 1000 eV. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  V. Godyak,et al.  Electrical conductivity in high‐frequency plasmas , 1996 .

[11]  V. Godyak,et al.  Magnetic field distribution measurements in a low‐pressure inductive discharge , 1995 .

[12]  George Lindfield,et al.  Numerical Methods Using MATLAB , 1998 .

[13]  Uwe R. Kortshagen,et al.  On the E - H mode transition in RF inductive discharges , 1996 .

[14]  Benjamin Alexandrovich,et al.  A simple analysis of an inductive RF discharge , 1992 .

[15]  Dennis W. Hewett,et al.  Analytic model of power deposition in inductively coupled plasma sources , 1995 .

[16]  M. Lieberman,et al.  Global model of Ar, O2, Cl2, and Ar/O2 high‐density plasma discharges , 1995 .

[17]  W. Runciman,et al.  The optical absorption of divalent chromium in CrCl2. 4H2O and CrSO4. 7H2O , 1963 .

[18]  H. Maciel,et al.  High‐density plasma mode of an inductively coupled radio frequency discharge , 1991 .

[19]  M. Loretto,et al.  The nature of dislocation loops in quenched aluminium , 1966 .

[20]  Tuszewski Enhanced Radio Frequency Field Penetration in an Inductively Coupled Plasma. , 1996, Physical review letters.

[21]  J. Thomson LIV.On the discharge of electricity through exhausted tubes without electrodes , 1891 .

[22]  D. Book,et al.  NRL (Naval Research Laboratory) Plasma Formulary. Revised. , 1983 .

[23]  Benjamin Alexandrovich,et al.  Electrical characteristics and electron heating mechanism of an inductively coupled argon discharge , 1994 .

[24]  E. Eggarter Comprehensive optical and collision data for radiation action. II. Ar , 1975 .

[25]  B. E. Mathews,et al.  Probe measurements in an electrodeless discharge. , 1966 .