Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag–Cu nanoclusters co-doped in SiO2 Sol-Gel films

The nonlinear optical properties and the role of the surface-plasmon resonance (SPR) on optical limiting (OL) properties of Ag–Cu nanoclusters co-doped in SiO2 matrix prepared using the sol-gel technique with a Cu∕Ag molar ratio of 1, 2 and 3, respectively, are presented. The studies were made using the second harmonic of high-power nanosecond and picosecond Nd:YAG lasers. These films show a self-defocusing nonlinearity with both nanosecond and picosecond pulses and a good nonlinear absorption behavior with the nanosecond pulse excitation. The nonlinear refractive index decreased with decreasing particle size, whereas the nonlinear absorption increased with an increase in Cu concentration. The observed nonlinear absorption is explained by taking into account the cumulative effect of both the intraband and interband mechanisms. The excitation near the SPR of Cu resulted in an enhanced OL behavior with increasing Cu concentration. No such concentration dependence is observed when the excitation is near the ...

[1]  Jacques A. Delaire,et al.  Optical Limitation induced by Gold Clusters. 1. Size Effect , 2000 .

[2]  A. Ikushima,et al.  Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles , 1994 .

[3]  Patrice L. Baldeck,et al.  Organic nanocrystals grown in gel glasses for optical-power-limiting applications , 2001 .

[4]  Chapter 1 – The Nonlinear Optical Susceptibility , 2003 .

[5]  P. Roussignol,et al.  Surface-mediated enhancement of optical phase conjugation in metal colloids. , 1985, Optics letters.

[6]  Reji Philip,et al.  Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters , 2000 .

[7]  Robert R. Alfano,et al.  Size dependence of the third-order susceptibility of copper nanoclusters investigated by four-wave mixing , 1994 .

[8]  Giovanna Brusatin,et al.  Optical limiting of multilayer sol-gel structures containing fullerenes , 1999 .

[9]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[10]  Jose Requejo-Isidro,et al.  Large Enhancement of the Third-order Optical Susceptibility in Cu-silica Composites Produced by Low-Energy High-Current Ion Implantation , 2001 .

[11]  T. F. Boggess,et al.  A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials , 1993 .

[12]  R. Zuhr,et al.  Picosecond nonlinear optical response of a Cu:silica nanocluster composite. , 1993, Optics letters.

[13]  Richard F. Haglund,et al.  Formation of copper and silver nanometer dimension clusters in silica by the sol‐gel process , 1996 .

[14]  G. Battaglin,et al.  Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica , 1998 .

[15]  J. Bigot,et al.  Size dependence of the energy relaxation in silver nanoparticles embedded in dielectric matrices , 1999 .

[16]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[17]  P. Baldeck,et al.  Organic nanocrystals embedded in sol–gel glasses for optical applications , 2000 .

[18]  S. Hill,et al.  Optical limiting characteristics and mechanism of silver bromide nanosols , 1996 .

[19]  F. Wudl,et al.  Fullerene doped glasses as solid state optical limiters , 1997 .

[20]  C. Flytzanis,et al.  Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass , 1999 .

[21]  Arao Nakamura,et al.  Subpicosecond time response of third‐order optical nonlinearity of small copper particles in glass , 1994 .

[22]  Jean-Yves Bigot,et al.  Electron dynamics in metallic nanoparticles , 2000 .

[23]  Valerij S. Gurin,et al.  Nonlinear optical properties of solgel-derived glasses doped with copper selenide nanoparticles , 2000 .

[24]  F. Gonella,et al.  Laser-induced sign reversal of the nonlinear refractive index of Ag nanoclusters in soda-lime glass , 1998 .

[25]  Q. Gong,et al.  Ultrafast optical Kerr effect of Ag-BaO composite thin films , 2003 .

[26]  N. Del Fatti,et al.  Ultrafast optical nonlinear properties of metal nanoparticles , 2001 .

[27]  G. De Sol-Gel Synthesis of Metal Nanoclusters-Silica Composite Films , 1998 .

[28]  C. Flytzanis,et al.  Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles , 2000 .

[29]  Robert B. Martin,et al.  NANOMATERIALS AS OPTICAL LIMITERS , 2000 .

[30]  G. W. Arnold,et al.  Metal Nanocluster Formation by Ion Implantation in Silicate Glasses:. Nonlinear Optical Applications , 1996 .

[31]  Carmen N. Afonso,et al.  Nanocrystal size dependence of the third-order nonlinear optical response of Cu:Al2O3 thin films , 1999 .

[32]  Shiliang Qu,et al.  A theoretical and experimental study on optical limiting in platinum nanoparticles , 2002 .

[33]  Nonlinear light scattering in a two-component medium: optical limiting application , 1998 .

[34]  Mostafa A. El-Sayed,et al.  Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation , 1999 .

[35]  G. Hartland,et al.  Picosecond Dynamics of Silver Nanoclusters. Photoejection of Electrons and Fragmentation , 1998 .