Statistical Analysis of Non-deterministic Fork-Join Processes

We study the combinatorial structure of concurrent programs with non-deterministic choice and a fork-join style of coordination. As a first step we establish a link between these concurrent programs and a class of combinatorial structures. Based on this combinatorial interpretation, we develop and experiment algorithms aimed at the statistical exploration of the state-space of programs. The first algorithm is a uniform random sampler of bounded executions, providing a suitable default exploration strategy. The second algorithm is a random sampler of execution prefixes that allows to control the exploration with respect to the uniform distribution. The fundamental characteristic of these algorithms is that they work on the control graph of the programs and not directly on their state-space, thus providing a way to tackle the state explosion problem.

[1]  Olivier Bodini,et al.  A Quantitative Study of Pure Parallel Processes , 2014, Electron. J. Comb..

[2]  Radu Grosu,et al.  Monte Carlo Model Checking , 2005, TACAS.

[3]  Olivier Bodini,et al.  Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets , 2017, CSR.

[4]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[5]  Olivier Bodini,et al.  The Combinatorics of Non-determinism , 2013, FSTTCS.

[6]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[7]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[8]  Olivier Roussel,et al.  Boltzmann generation for regular languages with shuffle , 2010 .

[9]  Philippe Flajolet,et al.  A Calculus for the random generation of combinatorial structures , 1993 .

[10]  Jean Mairesse,et al.  On the Average Parallelism in Trace Monoids , 2002, STACS.

[11]  Philippe Flajolet,et al.  Birthday Paradox, Coupon Collectors, Caching Algorithms and Self-Organizing Search , 1992, Discret. Appl. Math..

[12]  Olivier Bodini,et al.  The Combinatorics of Barrier Synchronization , 2019, Petri Nets.

[13]  Olivier Bodini,et al.  The Ordered and Colored Products in Analytic Combinatorics: Application to the Quantitative Study of Synchronizations in Concurrent Processes , 2017, ANALCO.

[14]  William B. Hart,et al.  FLINT : Fast library for number theory , 2013 .

[15]  Alain Denise,et al.  Uniform Monte-Carlo Model Checking , 2011, FASE.

[16]  Olivier Bodini,et al.  Polynomial tuning of multiparametric combinatorial samplers , 2017, ANALCO.

[17]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[18]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[19]  Philippe Flajolet,et al.  A Calculus of Random Generation , 1993, ESA.

[20]  Michèle Soria,et al.  Algorithms for combinatorial structures: Well-founded systems and Newton iterations , 2011, J. Comb. Theory, Ser. A.

[21]  Jean Mairesse,et al.  Uniform Generation in Trace Monoids , 2015, MFCS.

[22]  Alain Denise,et al.  Coverage-biased Random Exploration of Models , 2008, Electron. Notes Theor. Comput. Sci..

[23]  Philippe Flajolet,et al.  A Calculus for the Random Generation of Labelled Combinatorial Structures , 1994, Theor. Comput. Sci..

[24]  Conrado Martínez,et al.  An Experimental Study of Unranking Algorithms , 2004, WEA.

[25]  Michèle Soria,et al.  Uniform Sampling for Networks of Automata , 2017, CONCUR.