Clinical Application of Implantable Brain Machine Interfaces

Implantable brain machine interfaces (BMI) enable severely disabled people high-performance real-time robot control and communication, utilizing high-quality intracranial neural signals. Electrocorticograms (ECoG) are useful for implantable BMIs because of not only their zero time-lag property but their high spatiotemporal resolution with long term stability also. Fully implantable devices for ECoG recording offer long-term home-use with 24/7 supports. This will help not only patients with restoring motor and communication control but also help their caregivers with reducing burdens of caregiving day and night. Until now, we established ECoG-based robot control and communication. High gamma activity (80-150 Hz) was a good decoding feature for ECoG-based real time decoding and control. Independent component analyses effectively extract neural information with dimensional reduction and contribute to improving decoding accuracy. Also, we are developing a 128-channel fully-implantable BMI device (WHERBS) for long-term home-use with 24/7 supports. We completed GLP tests and non-clinical long-term implantation. The next step is a clinical trial to confirm safety and efficacy of the implantable BMI.