Robust Solutions of MultiObjective Linear Semi-Infinite Programs under Constraint Data Uncertainty

The multiobjective optimization model studied in this paper deals with simultaneous minimization of finitely many linear functions subject to an arbitrary number of uncertain linear constraints. We first provide a radius of robust feasibility guaranteeing the feasibility of the robust counterpart under affine data parametrization. We then establish dual characterizations of robust solutions of our model that are immunized against data uncertainty by way of characterizing corresponding solutions of robust counterpart of the model. Consequently, we present robust duality theorems relating the value of the robust model with the corresponding value of its dual problem.

[1]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[2]  Vaithilingam Jeyakumar,et al.  Robust conjugate duality for convex optimization under uncertainty with application to data classifi , 2011 .

[3]  Marco A. López,et al.  Robust linear semi-infinite programming duality under uncertainty , 2013, Math. Program..

[4]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[5]  Vaithilingam Jeyakumar,et al.  Continuous optimization : current trends and modern applications , 2005 .

[6]  Miguel A. Goberna,et al.  Constraint qualifications in linear vector semi-infinite optimization , 2013, Eur. J. Oper. Res..

[7]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[8]  Johannes Jahn,et al.  Duality in vector optimization , 1983, Math. Program..

[9]  Tamás Terlaky,et al.  An Interior Point Constraint Generation Algorithm for Semi-Infinite Optimization with Health-Care Application , 2011, Oper. Res..

[10]  F. Javier Toledo-Moreo,et al.  Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems , 2005, Math. Program..

[11]  Vaithilingam Jeyakumar,et al.  Strong Duality in Robust Convex Programming: Complete Characterizations , 2010, SIAM J. Optim..

[12]  Bruno Betrò,et al.  An accelerated central cutting plane algorithm for linear semi-infinite programming , 2004, Math. Program..

[13]  Miguel A. Goberna,et al.  Linear Semi-infinite Optimization: Recent Advances , 2005 .

[14]  Miguel A. Goberna,et al.  On the Stability of the Boundary of the Feasible Set in Linear Optimization , 2003 .

[15]  Amir Beck,et al.  Duality in robust optimization: Primal worst equals dual best , 2009, Oper. Res. Lett..

[16]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[17]  Vaithilingam Jeyakumar,et al.  Robust Duality in Parametric Convex Optimization , 2013 .

[18]  Marco A. López,et al.  Distance to ill-posedness for linear inequality systems under block perturbations: convex and infinite-dimensional cases , 2011 .

[19]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[20]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[21]  Vaithilingam Jeyakumar,et al.  Robust solutions to multi-objective linear programs with uncertain data , 2014, Eur. J. Oper. Res..