Geodesic Spanners on Polyhedral Surfaces
暂无分享,去创建一个
[1] Pravin M. Vaidya,et al. A sparse graph almost as good as the complete graph on points inK dimensions , 1991, Discret. Comput. Geom..
[2] Jörg-Rüdiger Sack,et al. Determining approximate shortest paths on weighted polyhedral surfaces , 2005, JACM.
[3] Giri Narasimhan,et al. New sparseness results on graph spanners , 1992, SCG '92.
[4] Giri Narasimhan,et al. A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.
[5] Guy Kortsarz,et al. Generating low-degree 2-spanners , 1994, SODA '94.
[6] J. Sack,et al. Handbook of computational geometry , 2000 .
[7] Franz Aurenhammer,et al. Handbook of Computational Geometry , 2000 .
[8] Joachim Gudmundsson,et al. Constructing Plane Spanners of Bounded Degree and Low Weight , 2005, Algorithmica.
[9] Giri Narasimhan,et al. Approximating the Stretch Factor of Euclidean Graphs , 2000, SIAM J. Comput..
[10] Giri Narasimhan,et al. Geometric spanner networks , 2007 .
[11] Jörg-Rüdiger Sack,et al. Approximating Shortest Paths on Weighted Polyhedral Surfaces , 2001, Algorithmica.
[12] Joseph S. B. Mitchell,et al. The Discrete Geodesic Problem , 1987, SIAM J. Comput..
[13] David Eppstein,et al. Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.
[14] Gautam Das. The visibility graph contains a bounded-degree spanner , 1997, CCCG.
[15] Guy Kortsarz. On the Hardness of Approximating Spanners , 2001, Algorithmica.
[16] Jeffrey S. Salowe. Construction of multidimensional spanner graphs, with applications to minimum spanning trees , 1991, SCG '91.
[17] Michiel H. M. Smid,et al. Efficient construction of a bounded-degree spanner with low weight , 2006, Algorithmica.
[18] Magnús M. Halldórsson,et al. Algorithm Theory - SWAT 2000 , 2000 .
[19] Micha Sharir,et al. Approximating shortest paths on a convex polytope in three dimensions , 1996, SCG '96.
[20] Samir Khuller,et al. Balancing minimum spanning and shortest path trees , 1993, SODA '93.
[21] Guy Kortsarz. On the Hardness of Approximation Spanners , 1998, APPROX.
[22] Giri Narasimhan,et al. A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..
[23] Giri Narasimhan,et al. New sparseness results on graph spanners , 1995, Int. J. Comput. Geom. Appl..
[24] Xiang-Yang Li,et al. Efficient Construction of Low Weight Bounded Degree Planar Spanner , 2003, COCOON.
[25] Xiang-Yang Li,et al. Efficient construction of low weighted bounded degree planar spanner , 2004, Int. J. Comput. Geom. Appl..
[26] David Peleg,et al. Strong Inapproximability of the Basic k-Spanner Problem , 2000, ICALP.
[27] Joachim Gudmundsson,et al. Improved Greedy Algorithms for Constructing Sparse Geometric Spanners , 2000, SWAT.
[28] David P. Dobkin,et al. On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..
[29] Jose Augusto Ramos Soares,et al. Graph Spanners: a Survey , 1992 .
[30] Joachim Gudmundsson,et al. Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..
[31] Satish Rao,et al. Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.
[32] Jörg-Rüdiger Sack,et al. Approximation algorithms for geometric shortest path problems , 2000, STOC '00.
[33] R. Dudley. Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .
[34] Joachim Gudmundsson,et al. Region-Fault Tolerant Geometric Spanners , 2007, SODA '07.
[35] Michiel H. M. Smid,et al. Dynamic algorithms for geometric spanners of small diameter: Randomized solutions , 1999, Comput. Geom..
[36] C. Pandu Rangan,et al. Restrictions of Minimum Spanner Problems , 1997, Inf. Comput..
[37] Micha Sharir,et al. On shortest paths in polyhedral spaces , 1986, STOC '84.
[38] Xiang-Yang Li,et al. A unified energy-efficient topology for unicast and broadcast , 2005, MobiCom '05.
[39] Sanjeev Khanna,et al. Design networks with bounded pairwise distance , 1999, STOC '99.
[40] Michiel H. M. Smid,et al. Euclidean spanners: short, thin, and lanky , 1995, STOC '95.
[41] J. Mark Keil,et al. Approximating the Complete Euclidean Graph , 1988, Scandinavian Workshop on Algorithm Theory.
[42] H. Regev. The Weight of the Greedy Graph Spanner , 1995 .
[43] Giri Narasimhan,et al. Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.
[44] Micha Sharir,et al. An Optimal-Time Algorithm for Shortest Paths on a Convex Polytope in Three Dimensions , 2006, SCG '06.
[45] Micha Sharir,et al. Approximating shortest paths on a convex polytope in three dimensions , 1997, JACM.
[46] Leonidas J. Guibas,et al. Static and kinetic geometric spanners with applications , 2001, SODA '01.
[47] Pankaj K. Agarwal,et al. Approximating Shortest Paths on a Nonconvex Polyhedron , 2000, SIAM J. Comput..
[48] Pankaj K. Agarwal,et al. Approximating shortest paths on a nonconvex polyhedron , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.