Geodesic Spanners on Polyhedral Surfaces

In this paper we consider the problem of efficiently constructing geodesic t-spanners. We consider finding sparse spanners on the surface of a 3 dimensional polyhedron allowing for steiner vertices. If Steiner vertices are not allowed, then we establish lower bounds on the maximum node degree, depending on the spanning ratio t and also the total number of vertices of the polyhedron surface. We also consider the case of the surface of a convex polytope $\mathcal P $ with V vertices. Using its vertex set P and Steiner points, we can construct a t-spanner with a constant degree and weight O(MST(U)), where MST(U) is the minimum spanning tree on the set U of vertices on convex polytope.

[1]  Pravin M. Vaidya,et al.  A sparse graph almost as good as the complete graph on points inK dimensions , 1991, Discret. Comput. Geom..

[2]  Jörg-Rüdiger Sack,et al.  Determining approximate shortest paths on weighted polyhedral surfaces , 2005, JACM.

[3]  Giri Narasimhan,et al.  New sparseness results on graph spanners , 1992, SCG '92.

[4]  Giri Narasimhan,et al.  A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.

[5]  Guy Kortsarz,et al.  Generating low-degree 2-spanners , 1994, SODA '94.

[6]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[7]  Franz Aurenhammer,et al.  Handbook of Computational Geometry , 2000 .

[8]  Joachim Gudmundsson,et al.  Constructing Plane Spanners of Bounded Degree and Low Weight , 2005, Algorithmica.

[9]  Giri Narasimhan,et al.  Approximating the Stretch Factor of Euclidean Graphs , 2000, SIAM J. Comput..

[10]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[11]  Jörg-Rüdiger Sack,et al.  Approximating Shortest Paths on Weighted Polyhedral Surfaces , 2001, Algorithmica.

[12]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[13]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[14]  Gautam Das The visibility graph contains a bounded-degree spanner , 1997, CCCG.

[15]  Guy Kortsarz On the Hardness of Approximating Spanners , 2001, Algorithmica.

[16]  Jeffrey S. Salowe Construction of multidimensional spanner graphs, with applications to minimum spanning trees , 1991, SCG '91.

[17]  Michiel H. M. Smid,et al.  Efficient construction of a bounded-degree spanner with low weight , 2006, Algorithmica.

[18]  Magnús M. Halldórsson,et al.  Algorithm Theory - SWAT 2000 , 2000 .

[19]  Micha Sharir,et al.  Approximating shortest paths on a convex polytope in three dimensions , 1996, SCG '96.

[20]  Samir Khuller,et al.  Balancing minimum spanning and shortest path trees , 1993, SODA '93.

[21]  Guy Kortsarz On the Hardness of Approximation Spanners , 1998, APPROX.

[22]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..

[23]  Giri Narasimhan,et al.  New sparseness results on graph spanners , 1995, Int. J. Comput. Geom. Appl..

[24]  Xiang-Yang Li,et al.  Efficient Construction of Low Weight Bounded Degree Planar Spanner , 2003, COCOON.

[25]  Xiang-Yang Li,et al.  Efficient construction of low weighted bounded degree planar spanner , 2004, Int. J. Comput. Geom. Appl..

[26]  David Peleg,et al.  Strong Inapproximability of the Basic k-Spanner Problem , 2000, ICALP.

[27]  Joachim Gudmundsson,et al.  Improved Greedy Algorithms for Constructing Sparse Geometric Spanners , 2000, SWAT.

[28]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[29]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[30]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[31]  Satish Rao,et al.  Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.

[32]  Jörg-Rüdiger Sack,et al.  Approximation algorithms for geometric shortest path problems , 2000, STOC '00.

[33]  R. Dudley Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .

[34]  Joachim Gudmundsson,et al.  Region-Fault Tolerant Geometric Spanners , 2007, SODA '07.

[35]  Michiel H. M. Smid,et al.  Dynamic algorithms for geometric spanners of small diameter: Randomized solutions , 1999, Comput. Geom..

[36]  C. Pandu Rangan,et al.  Restrictions of Minimum Spanner Problems , 1997, Inf. Comput..

[37]  Micha Sharir,et al.  On shortest paths in polyhedral spaces , 1986, STOC '84.

[38]  Xiang-Yang Li,et al.  A unified energy-efficient topology for unicast and broadcast , 2005, MobiCom '05.

[39]  Sanjeev Khanna,et al.  Design networks with bounded pairwise distance , 1999, STOC '99.

[40]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[41]  J. Mark Keil,et al.  Approximating the Complete Euclidean Graph , 1988, Scandinavian Workshop on Algorithm Theory.

[42]  H. Regev The Weight of the Greedy Graph Spanner , 1995 .

[43]  Giri Narasimhan,et al.  Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.

[44]  Micha Sharir,et al.  An Optimal-Time Algorithm for Shortest Paths on a Convex Polytope in Three Dimensions , 2006, SCG '06.

[45]  Micha Sharir,et al.  Approximating shortest paths on a convex polytope in three dimensions , 1997, JACM.

[46]  Leonidas J. Guibas,et al.  Static and kinetic geometric spanners with applications , 2001, SODA '01.

[47]  Pankaj K. Agarwal,et al.  Approximating Shortest Paths on a Nonconvex Polyhedron , 2000, SIAM J. Comput..

[48]  Pankaj K. Agarwal,et al.  Approximating shortest paths on a nonconvex polyhedron , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.