Searching for realizations of finite metric spaces in tight spans

Abstract An important problem that commonly arises in areas such as internet traffic-flow analysis, phylogenetics and electrical circuit design, is to find a representation of any given metric D on a finite set by an edge-weighted graph, such that the total edge length of the graph is minimum over all such graphs. Such a graph is called an optimal realization and finding such realizations is known to be NP-hard. Recently Varone presented a heuristic greedy algorithm for computing optimal realizations. Here we present an alternative heuristic that exploits the relationship between realizations of the metric D and its so-called tight span T D . The tight span T D is a canonical polytopal complex that can be associated to D , and our approach explores parts of T D for realizations in a way that is similar to the classical simplex algorithm. We also provide computational results illustrating the performance of our approach for different types of metrics, including l 1 -distances and two-decomposable metrics for which it is provably possible to find optimal realizations in their tight spans.

[1]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[2]  Victor Chepoi,et al.  Embedding into the rectilinear plane in optimal O(n2) time , 2009, Theor. Comput. Sci..

[3]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[4]  Karim Nouioua,et al.  Enveloppes de Pareto et Réseaux de Manhattan : caractérisations et algorithmes , 2005 .

[5]  David Shallcross,et al.  Distance Realization Problems with Applications to Internet Tomography , 2001, J. Comput. Syst. Sci..

[6]  Sacha C. Varone,et al.  A constructive algorithm for realizing a distance matrix , 2006, Eur. J. Oper. Res..

[7]  J. Isbell Six theorems about injective metric spaces , 1964 .

[8]  Dorit S. Hochbaum,et al.  Complexity of some inverse shortest path lengths problems , 2010, Networks.

[9]  Katharina T. Huber,et al.  Basic Phylogenetic Combinatorics , 2011 .

[10]  Sven Herrmann,et al.  Bounds on the f-vectors of tight spans , 2006, Contributions Discret. Math..

[11]  Alain Hertz,et al.  The Metric Cutpoint Partition Problem , 2008, J. Classif..

[12]  Alexander Wolff,et al.  The minimum Manhattan network problem: Approximations and exact solutions , 2006, Comput. Geom..

[13]  David Eppstein,et al.  Optimally Fast Incremental Manhattan Plane Embedding and Planar Tight Span Construction , 2009, J. Comput. Geom..

[14]  A. Dress,et al.  Split decomposition: a new and useful approach to phylogenetic analysis of distance data. , 1992, Molecular phylogenetics and evolution.

[15]  S. S. Yau,et al.  Distance matrix of a graph and its realizability , 1965 .

[16]  C. Kuratowski Quelques problèmes concernant les espaces métriques non-séparables , 1935 .

[17]  Francis Y. L. Chin,et al.  Minimum Manhattan network is NP-complete , 2009, SCG '09.

[18]  Ingo Althöfer,et al.  On optimal realizations of finite metric spaces by graphs , 1988, Discret. Comput. Geom..

[19]  Victor Klee,et al.  Convex polytopes and related complexes , 1996 .

[20]  Hong Zhu,et al.  A Fast 2-Approximation Algorithm for the Minimum Manhattan Network Problem , 2008, AAIM.

[21]  Marek Chrobak,et al.  Generosity helps, or an 11–competitive algorithm for three servers , 1992, SODA '92.

[22]  Peter Winkler,et al.  Isometric embedding in products of complete graphs , 1984, Discret. Appl. Math..

[23]  A. Dress Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .

[24]  Andreas Spillner,et al.  A fixed-parameter algorithm for the minimum Manhattan network problem , 2011, J. Comput. Geom..

[25]  Victor Chepoi,et al.  A Rounding Algorithm for Approximating Minimum Manhattan Networks , 2005, APPROX-RANDOM.

[26]  Katharina T. Huber,et al.  An Algorithm for Computing Cutpoints in Finite Metric Spaces , 2009, J. Classif..

[27]  P. Buneman The Recovery of Trees from Measures of Dissimilarity , 1971 .

[28]  J. M. S. Simões-Pereira,et al.  On optimal embeddings of metrics in graphs , 1984, J. Comb. Theory, Ser. B.

[29]  Alain Hertz,et al.  The Metric Bridge Partition Problem: Partitioning of a Metric Space into Two Subspaces Linked by an Edge in Any Optimal Realization , 2007, J. Classif..

[30]  Victor Chepoi,et al.  Embedding into the rectilinear plane in optimal O*(n^2) , 2009, ArXiv.

[31]  Jacobus H. Koolen,et al.  Optimal realizations of two-dimensional, totally-decomposable metrics , 2011, Discret. Math..