Searching for realizations of finite metric spaces in tight spans
暂无分享,去创建一个
[1] Michael Joswig,et al. polymake: a Framework for Analyzing Convex Polytopes , 2000 .
[2] Victor Chepoi,et al. Embedding into the rectilinear plane in optimal O(n2) time , 2009, Theor. Comput. Sci..
[3] Nesa L'abbe Wu,et al. Linear programming and extensions , 1981 .
[4] Karim Nouioua,et al. Enveloppes de Pareto et Réseaux de Manhattan : caractérisations et algorithmes , 2005 .
[5] David Shallcross,et al. Distance Realization Problems with Applications to Internet Tomography , 2001, J. Comput. Syst. Sci..
[6] Sacha C. Varone,et al. A constructive algorithm for realizing a distance matrix , 2006, Eur. J. Oper. Res..
[7] J. Isbell. Six theorems about injective metric spaces , 1964 .
[8] Dorit S. Hochbaum,et al. Complexity of some inverse shortest path lengths problems , 2010, Networks.
[9] Katharina T. Huber,et al. Basic Phylogenetic Combinatorics , 2011 .
[10] Sven Herrmann,et al. Bounds on the f-vectors of tight spans , 2006, Contributions Discret. Math..
[11] Alain Hertz,et al. The Metric Cutpoint Partition Problem , 2008, J. Classif..
[12] Alexander Wolff,et al. The minimum Manhattan network problem: Approximations and exact solutions , 2006, Comput. Geom..
[13] David Eppstein,et al. Optimally Fast Incremental Manhattan Plane Embedding and Planar Tight Span Construction , 2009, J. Comput. Geom..
[14] A. Dress,et al. Split decomposition: a new and useful approach to phylogenetic analysis of distance data. , 1992, Molecular phylogenetics and evolution.
[15] S. S. Yau,et al. Distance matrix of a graph and its realizability , 1965 .
[16] C. Kuratowski. Quelques problèmes concernant les espaces métriques non-séparables , 1935 .
[17] Francis Y. L. Chin,et al. Minimum Manhattan network is NP-complete , 2009, SCG '09.
[18] Ingo Althöfer,et al. On optimal realizations of finite metric spaces by graphs , 1988, Discret. Comput. Geom..
[19] Victor Klee,et al. Convex polytopes and related complexes , 1996 .
[20] Hong Zhu,et al. A Fast 2-Approximation Algorithm for the Minimum Manhattan Network Problem , 2008, AAIM.
[21] Marek Chrobak,et al. Generosity helps, or an 11–competitive algorithm for three servers , 1992, SODA '92.
[22] Peter Winkler,et al. Isometric embedding in products of complete graphs , 1984, Discret. Appl. Math..
[23] A. Dress. Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .
[24] Andreas Spillner,et al. A fixed-parameter algorithm for the minimum Manhattan network problem , 2011, J. Comput. Geom..
[25] Victor Chepoi,et al. A Rounding Algorithm for Approximating Minimum Manhattan Networks , 2005, APPROX-RANDOM.
[26] Katharina T. Huber,et al. An Algorithm for Computing Cutpoints in Finite Metric Spaces , 2009, J. Classif..
[27] P. Buneman. The Recovery of Trees from Measures of Dissimilarity , 1971 .
[28] J. M. S. Simões-Pereira,et al. On optimal embeddings of metrics in graphs , 1984, J. Comb. Theory, Ser. B.
[29] Alain Hertz,et al. The Metric Bridge Partition Problem: Partitioning of a Metric Space into Two Subspaces Linked by an Edge in Any Optimal Realization , 2007, J. Classif..
[30] Victor Chepoi,et al. Embedding into the rectilinear plane in optimal O*(n^2) , 2009, ArXiv.
[31] Jacobus H. Koolen,et al. Optimal realizations of two-dimensional, totally-decomposable metrics , 2011, Discret. Math..