Structural characteristics and electrochemical performance of layered Li[Mn0.5−xCr2xNi0.5−x]O2 cathode materials

Abstract Li[Mn 0.5− x Cr 2 x Ni 0.5− x ]O 2 (0  x 2 layer structure). The extent of Li/Ni intermixing decreased, and layering of the structure increased, with increasing Cr content. Electrochemical cycling of the oxides, at 30 °C in the 3–4.3 V range vs. Li/Li + , showed that the first charge capacity increased with increasing Cr content. However, maximum discharge capacity (∼143 mAh g −1 ) was observed for 2 x  = 0.05. X-ray absorption near edge spectroscopic (XANES) measurements on the K-edges of transition metals were carried out on pristine and delithiated oxides to elucidate the charge compensation mechanism during electrochemical charging. The XANES data revealed simultaneous oxidation of both Ni and Cr ions, whereas manganese remains as Mn 4+ throughout, and does not participate in charge compensation during oxide delithiation.

[1]  Xiao‐Qing Yang,et al.  Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. , 2005, Journal of the American Chemical Society.

[2]  Tsutomu Ohzuku,et al.  Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries , 2001 .

[3]  Xiao‐Qing Yang,et al.  Investigating the first-cycle irreversibility of lithium metal oxide cathodes for Li batteries , 2008 .

[4]  P. Kumta,et al.  Influence of Crystallite Size on the Electrochemical Properties of Chemically Synthesized Stoichiometric LiNiO2 , 2002 .

[5]  W. O'grady,et al.  In Situ X‐Ray Absorption Near‐Edge Structure Evidence for Quadrivalent Nickel in Nickel Battery Electrodes , 1996 .

[6]  S. Kraft,et al.  High resolution x‐ray absorption spectroscopy with absolute energy calibration for the determination of absorption edge energies , 1996 .

[7]  I. Nakai,et al.  In Situ Transmission X‐Ray Absorption Fine Structure Analysis of the Li Deintercalation Process in Li ( Ni0.5Co0.5 ) O 2 , 1999 .

[8]  B. V. R. Chowdari,et al.  X-ray photoelectron spectroscopy and electrochemical behaviour of 4 V cathode, Li(Ni1/2Mn1/2)O2 , 2003 .

[9]  James McBreen,et al.  In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries , 2001 .

[10]  Gerbrand Ceder,et al.  Charge, Potential, and Phase Stability of Layered Li ( Ni0.5Mn0.5 ) O 2 , 2002 .

[11]  J. Dahn,et al.  Reactivity of Li y [ Ni x Co1 − 2x Mn x ] O 2 ( x = 0.1 , 0.2, 0.35, 0.45, and 0.5; y = 0.3 , 0.5) with Nonaqueous Solvents and Electrolytes Studied by ARC , 2005 .

[12]  L. Charlet,et al.  X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface , 1992 .

[13]  G. Frankel,et al.  In Situ X‐Ray Absorption Study of Chromium Valency Changes in Passive Oxides on Sputtered AlCr Thin Films under Electrochemical Control , 1991 .

[14]  M. Balasubramanian,et al.  In Situ X‐Ray Absorption Studies of a High‐Rate LiNi0.85Co0.15 O 2 Cathode Material , 2000 .

[15]  John T. Vaughey,et al.  Structural Characterization of Layered LixNi0.5Mn0.5O2 (0 < x ≤ 2) Oxide Electrodes for Li Batteries , 2003 .

[16]  J. Dahn,et al.  Structure and Electrochemistry of Layered Li [ Cr x Li ( 1 / 3 − x / 3 ) Mn ( 2 / 3 − 2x / 3 ) ] O 2 , 2002 .

[17]  E. Cairns,et al.  Local structure of LiNi0.5Mn0.5O2 cathode material probed by in situ x-ray absorption spectroscopy , 2006 .

[18]  M. Balasubramanian,et al.  In Situ X-Ray Absorption Study of a Layered Manganese-Chromium Oxide-Based Cathode Material , 2002 .

[19]  Daniel P. Abraham,et al.  Layered Li(Ni0.5−xMn0.5−xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries , 2002 .

[20]  Ru‐Shi Liu,et al.  Local Structure and First Cycle Redox Mechanism of Layered Li 1.2 Cr 0.4 Mn 0.4 O 2 Cathode Material , 2002 .

[21]  J. Dahn,et al.  Understanding Irreversible Capacity in Li x Ni1 − y Fe y O 2 Cathode Materials , 2000 .

[22]  Xiao‐Qing Yang,et al.  In Situ X-ray Absorption Spectroscopic Study on LiNi0.5Mn0.5O2 Cathode Material during Electrochemical Cycling , 2003 .

[23]  Zhonghua Lu,et al.  Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .

[24]  J. Prakash,et al.  Structural Transformation of Li [ Ni0.5 − x Co2x Mn0.5 − x ] O2 ( 2x ≤ 0.1 ) Charged in High-Voltage Range ( 4.5 V ) , 2007 .

[25]  K. Amine,et al.  Electrochemical Properties of Lithium-Rich Li1 + x ( Mn1 ∕ 3Ni1 ∕ 3Co1 ∕ 3 ) 1 − x O2 at High Potential , 2006 .