Structural characteristics and electrochemical performance of layered Li[Mn0.5−xCr2xNi0.5−x]O2 cathode materials
暂无分享,去创建一个
Daniel P. Abraham | Mahalingam Balasubramanian | Ram S. Katiyar | Jose J. Saavedra-Arias | D. Abraham | M. Balasubramanian | R. Katiyar | M. Furczon | N. Karan | J. Saavedra-Arias | D. Pradhan | Reji Thomas | Reji Thomas | Dillip K. Pradhan | N. K. Karan | M. M. Furczon
[1] Xiao‐Qing Yang,et al. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. , 2005, Journal of the American Chemical Society.
[2] Tsutomu Ohzuku,et al. Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries , 2001 .
[3] Xiao‐Qing Yang,et al. Investigating the first-cycle irreversibility of lithium metal oxide cathodes for Li batteries , 2008 .
[4] P. Kumta,et al. Influence of Crystallite Size on the Electrochemical Properties of Chemically Synthesized Stoichiometric LiNiO2 , 2002 .
[5] W. O'grady,et al. In Situ X‐Ray Absorption Near‐Edge Structure Evidence for Quadrivalent Nickel in Nickel Battery Electrodes , 1996 .
[6] S. Kraft,et al. High resolution x‐ray absorption spectroscopy with absolute energy calibration for the determination of absorption edge energies , 1996 .
[7] I. Nakai,et al. In Situ Transmission X‐Ray Absorption Fine Structure Analysis of the Li Deintercalation Process in Li ( Ni0.5Co0.5 ) O 2 , 1999 .
[8] B. V. R. Chowdari,et al. X-ray photoelectron spectroscopy and electrochemical behaviour of 4 V cathode, Li(Ni1/2Mn1/2)O2 , 2003 .
[9] James McBreen,et al. In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries , 2001 .
[10] Gerbrand Ceder,et al. Charge, Potential, and Phase Stability of Layered Li ( Ni0.5Mn0.5 ) O 2 , 2002 .
[11] J. Dahn,et al. Reactivity of Li y [ Ni x Co1 − 2x Mn x ] O 2 ( x = 0.1 , 0.2, 0.35, 0.45, and 0.5; y = 0.3 , 0.5) with Nonaqueous Solvents and Electrolytes Studied by ARC , 2005 .
[12] L. Charlet,et al. X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface , 1992 .
[13] G. Frankel,et al. In Situ X‐Ray Absorption Study of Chromium Valency Changes in Passive Oxides on Sputtered AlCr Thin Films under Electrochemical Control , 1991 .
[14] M. Balasubramanian,et al. In Situ X‐Ray Absorption Studies of a High‐Rate LiNi0.85Co0.15 O 2 Cathode Material , 2000 .
[15] John T. Vaughey,et al. Structural Characterization of Layered LixNi0.5Mn0.5O2 (0 < x ≤ 2) Oxide Electrodes for Li Batteries , 2003 .
[16] J. Dahn,et al. Structure and Electrochemistry of Layered Li [ Cr x Li ( 1 / 3 − x / 3 ) Mn ( 2 / 3 − 2x / 3 ) ] O 2 , 2002 .
[17] E. Cairns,et al. Local structure of LiNi0.5Mn0.5O2 cathode material probed by in situ x-ray absorption spectroscopy , 2006 .
[18] M. Balasubramanian,et al. In Situ X-Ray Absorption Study of a Layered Manganese-Chromium Oxide-Based Cathode Material , 2002 .
[19] Daniel P. Abraham,et al. Layered Li(Ni0.5−xMn0.5−xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries , 2002 .
[20] Ru‐Shi Liu,et al. Local Structure and First Cycle Redox Mechanism of Layered Li 1.2 Cr 0.4 Mn 0.4 O 2 Cathode Material , 2002 .
[21] J. Dahn,et al. Understanding Irreversible Capacity in Li x Ni1 − y Fe y O 2 Cathode Materials , 2000 .
[22] Xiao‐Qing Yang,et al. In Situ X-ray Absorption Spectroscopic Study on LiNi0.5Mn0.5O2 Cathode Material during Electrochemical Cycling , 2003 .
[23] Zhonghua Lu,et al. Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .
[24] J. Prakash,et al. Structural Transformation of Li [ Ni0.5 − x Co2x Mn0.5 − x ] O2 ( 2x ≤ 0.1 ) Charged in High-Voltage Range ( 4.5 V ) , 2007 .
[25] K. Amine,et al. Electrochemical Properties of Lithium-Rich Li1 + x ( Mn1 ∕ 3Ni1 ∕ 3Co1 ∕ 3 ) 1 − x O2 at High Potential , 2006 .