Catalytic hydrogenation of alkenes on acidic zeolites: Mechanistic connections to monomolecular alkane dehydrogenation reactions

[1]  Minkee Choi,et al.  Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. , 2010, Journal of the American Chemical Society.

[2]  Enrique Iglesia,et al.  Effects of partial confinement on the specificity of monomolecular alkane reactions for acid sites in side pockets of mordenite. , 2010, Angewandte Chemie.

[3]  B. Gates,et al.  Dynamic structural changes in a molecular zeolite-supported iridium catalyst for ethene hydrogenation. , 2009, Journal of the American Chemical Society.

[4]  Enrique Iglesia,et al.  Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites. , 2009, Journal of the American Chemical Society.

[5]  A. Bhan,et al.  A link between reactivity and local structure in acid catalysis on zeolites. , 2008, Accounts of Chemical Research.

[6]  E. Iglesia,et al.  RuO2 clusters within LTA zeolite cages: consequences of encapsulation on catalytic reactivity and selectivity. , 2007, Angewandte Chemie.

[7]  Bin Xu,et al.  Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites , 2006 .

[8]  Robert J. Davis,et al.  A density functional theory study of the alkylation of isobutane with butene over phosphotungstic acid , 2006 .

[9]  M. Neurock,et al.  A quantum chemical study of tertiary carbenium ions in acid catalyzed hydrocarbon conversions over phosphotungstic acid , 2006 .

[10]  D. Wolf,et al.  Kinetics of Heterogeneous Catalytic Reactions , 2004 .

[11]  J. Lercher,et al.  Sulfur tolerance of Pt/mordenites for benzene hydrogenation: Do Brønsted acid sites participate in hydrogenation? , 2002 .

[12]  James A. Dumesic,et al.  Analyses of Reaction Schemes Using De Donder Relations , 1999 .

[13]  B. Gates,et al.  Nay zeolite-supported rhodium and iridium cluster catalysts : Characterization by X-ray absorption spectroscopy during propene hydrogenation catalysis , 1999 .

[14]  J. Sauer,et al.  Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites , 1998 .

[15]  W. L. Holstein,et al.  Application of the De Donder Relation to the Mechanism of Catalytic Reactions , 1997 .

[16]  J. Lercher,et al.  Dehydrogenation of light alkanes over zeolites , 1997 .

[17]  J. Lercher,et al.  On the role of the pore size and tortuosity for sorption of aalkanes in molecular sieves , 1997 .

[18]  J. Lercher,et al.  Alkane sorption in molecular sieves: The contribution of ordering, intermolecular interactions, and sorption on Brønsted acid sites , 1997 .

[19]  V. Kazansky,et al.  Quantumchemical study of the isobutane cracking on zeolites , 1996 .

[20]  J. S. Buchanan,et al.  Mechanistic considerations in acid-catalyzed cracking of olefins , 1996 .

[21]  B. Gates Supported Metal Clusters: Synthesis, Structure, and Catalysis , 1995 .

[22]  G. Kramer,et al.  Reactivity Theory of Zeolitic Broensted Acidic Sites , 1995 .

[23]  A. Corma,et al.  Activation of Hydrogen on Zeolites: Kinetics and Mechanism of n-Heptane Cracking on H-ZSM-5 Zeolites Under High Hydrogen Pressure , 1995 .

[24]  J. Meusinger,et al.  Cracking of n-Heptane on Metal-Free H-ZSM-5 Zeolite at High Hydrogen Pressure , 1994 .

[25]  R. A. Santen,et al.  Carbonium ion formation in zeolite catalysis , 1994 .

[26]  B. Gates,et al.  Monomolecular and bimolecular mechanisms of paraffin cracking: n-Butane cracking catalyzed by HZSM-5 , 1992 .

[27]  J. Martens,et al.  On the Nature of the Active-Sites for Ethylene Hydrogenation in Metal-Free Zeolites , 1992 .

[28]  D. Barthomeuf Zeolite acidity dependence on structure and chemical environment: correlations with catalysis , 1987 .

[29]  B. Wojciechowski,et al.  The mechanism of catalytic cracking of n‐alkenes on ZSM‐5 zeolite , 1985 .

[30]  K. Lammertsma,et al.  Heterogeneous gas phase ethylation of methane with ethylene over solid superacids. A 13C isotope tracer study , 1983 .

[31]  P. A. Jacobs,et al.  Active sites in zeolites: Part 7. Isopropanol dehydrogenation over alkali cation-exchanged X and Y zeolites , 1977 .

[32]  M. Siskin STRONG ACID CHEMISTRY. 3. ALKENE-ALKANE ALKYLATIONS IN HYDROFLUORIC ACID-TANTALUM PENTAFLUORIDE. EVIDENCE FOR THE PRESENCE OF ETHYL(1+) ION IN SOLUTION , 1976 .

[33]  P. Jacobs,et al.  Active sites in zeolites: 5. Hydrogen-deuterium equilibration over synthetic faujasites , 1976 .

[34]  G. Olah,et al.  Electrophilic reactions at single bonds. XII. Hydrogen-deuterium exchange, protolysis (deuterolysis), and oligocondensation of alkanes with superacids , 1973 .

[35]  G. Olah,et al.  Electrophilic reactions at single bonds. III. H-D exchange and protolysis (deuterolysis) of alkanes with superacids. The mechanism of acid-catalyzed hydrocarbon transformation reactions involving the .sigma. electron pair donor ability of single bonds via three-center bond formation , 1971 .

[36]  H. Hogeveen,et al.  Chemistry and spectroscopy in strongly acidic solutions. Part XXIII: Reversible reaction between carbonium ions and hydrogen , 1969 .

[37]  The Journal of Catalysis , 1962, Nature.

[38]  K. Denbigh,et al.  The thermodynamics of the steady state , 1951 .

[39]  P. Rysselberghe,et al.  Thermodynamic theory of affinity : a book of principles , 1937 .