Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture

Foundations of sheaves on graphs and their homological invariants The Hanna Neumann conjecture Appendix A. A direct view of p-kernels Appendix B. Joel Friedman's proof of the strengthened Hanna Neumann conjecture by Warren Dicks Bibliography

[1]  S. Epstein,et al.  Group Theory: 4 , 1904 .

[2]  M. Atiyah Elliptic operators, discrete groups and von Neumann algebras , 1976 .

[3]  S. I. Gelʹfand,et al.  Methods of Homological Algebra , 1996 .

[4]  Robert G. Burns,et al.  On Finitely Generated Subgroups of Free Products , 1971, Journal of the Australian Mathematical Society.

[5]  On the Hanna Neumann Conjecture , 2003, math/0302009.

[6]  Warren Dicks Equivalence of the strengthened Hanna Neumann conjecture and the amalgamated graph conjecture , 1994 .

[7]  J. Friedman Sheaves on Graphs and Their Homological Invariants , 2011, 1104.2665.

[8]  Martin Cloutier,et al.  AVEC LA COLLABORATION DE , 2006 .

[9]  S. V. IVANOV Intersecting Free Subgroups in Free Products of Groups , 2001, Int. J. Algebra Comput..

[10]  Wilfried Imrich,et al.  On finitely generated subgroups of free groups , 1977 .

[11]  Gábor Tardos On the intersection of subgroups of a free group , 1992 .

[12]  B. Everitt,et al.  Graphs, free groups and the Hanna Neumann conjecture , 2007, math/0701214.

[13]  Joel Friedman,et al.  Generalized Alon--Boppana Theorems and Error-Correcting Codes , 2005, SIAM J. Discret. Math..

[14]  A. Terras,et al.  Zeta Functions of Finite Graphs and Coverings , 1996 .

[15]  J. Friedman Some geometric aspects of graphs and their eigenfunctions , 1993 .

[16]  A. G. Howson On the Intersection of Finitely Generated Free Groups , 1954 .

[17]  Peter Hilton,et al.  A Course in Homological Algebra , 1972 .

[18]  A. Meyers Reading , 1999, Language Teaching.

[19]  A. Grothendieck,et al.  Théorie des Topos et Cohomologie Etale des Schémas , 1972 .

[20]  Goulnara Arzhantseva,et al.  A property of subgroups of infinite index in a free group , 2000 .

[21]  Gfibor Tardos Towards the Hanna Neumann conjecture using Dicks' method , 1996 .

[22]  A. Grothendieck,et al.  Cohomologie l-adique et fonctions L , 1977 .

[23]  D. Wise The Coherence of One‐Relator Groups with Torsion and the Hanna Neumann Conjecture , 2005 .

[24]  Joel Friedman,et al.  Spectral estimates for Abelian Cayley graphs , 2006, J. Comb. Theory, Ser. B.

[25]  S. V. Ivanov On the Intersection of Finitely Generated Subgroups in Free Products of Groups , 1999, Int. J. Algebra Comput..

[26]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[27]  Warren Dicks,et al.  The rank three case of the Hanna Neumann Conjecture , 2001 .

[28]  John R. Stallings,et al.  Topology of finite graphs , 1983 .

[29]  On the intersection of finitely generated subgroups of a free group , 1971 .

[30]  S. M. Gersten,et al.  Intersection of finitely generated subgroups of free groups and resolutions of graphs , 1983 .

[31]  Brigitte Servatius A short proof of a theorem of burns , 1983 .

[32]  W. Lück L2-Invariants: Theory and Applications to Geometry and K-Theory , 2002 .

[33]  Walter D. Neumann On intersections of finitely generated subgroups of free groups , 1990 .

[34]  Subgroups of free groups : a contribution to the Hanna Neumann conjecture , 2000 .

[35]  I. Mineyev,et al.  THE TOPOLOGY AND ANALYSIS OF THE HANNA NEUMANN CONJECTURE , 2011 .

[36]  Jonathan L. Gross Every connected regular graph of even degree is a Schreier coset graph , 1977, J. Comb. Theory, Ser. B.

[37]  R. Tennant Algebra , 1941, Nature.

[38]  Nathan Linial,et al.  Random Graph Coverings I: General Theory and Graph Connectivity , 2002, Comb..