Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture
暂无分享,去创建一个
[1] S. Epstein,et al. Group Theory: 4 , 1904 .
[2] M. Atiyah. Elliptic operators, discrete groups and von Neumann algebras , 1976 .
[3] S. I. Gelʹfand,et al. Methods of Homological Algebra , 1996 .
[4] Robert G. Burns,et al. On Finitely Generated Subgroups of Free Products , 1971, Journal of the Australian Mathematical Society.
[5] On the Hanna Neumann Conjecture , 2003, math/0302009.
[6] Warren Dicks. Equivalence of the strengthened Hanna Neumann conjecture and the amalgamated graph conjecture , 1994 .
[7] J. Friedman. Sheaves on Graphs and Their Homological Invariants , 2011, 1104.2665.
[8] Martin Cloutier,et al. AVEC LA COLLABORATION DE , 2006 .
[9] S. V. IVANOV. Intersecting Free Subgroups in Free Products of Groups , 2001, Int. J. Algebra Comput..
[10] Wilfried Imrich,et al. On finitely generated subgroups of free groups , 1977 .
[11] Gábor Tardos. On the intersection of subgroups of a free group , 1992 .
[12] B. Everitt,et al. Graphs, free groups and the Hanna Neumann conjecture , 2007, math/0701214.
[13] Joel Friedman,et al. Generalized Alon--Boppana Theorems and Error-Correcting Codes , 2005, SIAM J. Discret. Math..
[14] A. Terras,et al. Zeta Functions of Finite Graphs and Coverings , 1996 .
[15] J. Friedman. Some geometric aspects of graphs and their eigenfunctions , 1993 .
[16] A. G. Howson. On the Intersection of Finitely Generated Free Groups , 1954 .
[17] Peter Hilton,et al. A Course in Homological Algebra , 1972 .
[18] A. Meyers. Reading , 1999, Language Teaching.
[19] A. Grothendieck,et al. Théorie des Topos et Cohomologie Etale des Schémas , 1972 .
[20] Goulnara Arzhantseva,et al. A property of subgroups of infinite index in a free group , 2000 .
[21] Gfibor Tardos. Towards the Hanna Neumann conjecture using Dicks' method , 1996 .
[22] A. Grothendieck,et al. Cohomologie l-adique et fonctions L , 1977 .
[23] D. Wise. The Coherence of One‐Relator Groups with Torsion and the Hanna Neumann Conjecture , 2005 .
[24] Joel Friedman,et al. Spectral estimates for Abelian Cayley graphs , 2006, J. Comb. Theory, Ser. B.
[25] S. V. Ivanov. On the Intersection of Finitely Generated Subgroups in Free Products of Groups , 1999, Int. J. Algebra Comput..
[26] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[27] Warren Dicks,et al. The rank three case of the Hanna Neumann Conjecture , 2001 .
[28] John R. Stallings,et al. Topology of finite graphs , 1983 .
[29] On the intersection of finitely generated subgroups of a free group , 1971 .
[30] S. M. Gersten,et al. Intersection of finitely generated subgroups of free groups and resolutions of graphs , 1983 .
[31] Brigitte Servatius. A short proof of a theorem of burns , 1983 .
[32] W. Lück. L2-Invariants: Theory and Applications to Geometry and K-Theory , 2002 .
[33] Walter D. Neumann. On intersections of finitely generated subgroups of free groups , 1990 .
[34] Subgroups of free groups : a contribution to the Hanna Neumann conjecture , 2000 .
[35] I. Mineyev,et al. THE TOPOLOGY AND ANALYSIS OF THE HANNA NEUMANN CONJECTURE , 2011 .
[36] Jonathan L. Gross. Every connected regular graph of even degree is a Schreier coset graph , 1977, J. Comb. Theory, Ser. B.
[37] R. Tennant. Algebra , 1941, Nature.
[38] Nathan Linial,et al. Random Graph Coverings I: General Theory and Graph Connectivity , 2002, Comb..