Thermodynamic assessment of the Cs–Te binary system

[1]  Y. Yamazaki,et al.  Corrosion behavior of 9CrODS steel by simulated fission product cesium and tellurium , 2013 .

[2]  Christine Guéneau,et al.  Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U–Pu–O–C systems , 2011 .

[3]  I. Ivanova,et al.  Precipitation-hardened ferritic steels for fast neutron reactors , 2010 .

[4]  Shigeharu Ukai,et al.  High-temperature strength characterization of advanced 9Cr-ODS ferritic steels , 2009 .

[5]  A. Povstyanko,et al.  Fuel Pin Irradiation Test at up to 5 at% Burnup in BOR-60 for Oxide-Dispersion-Strengthened Ferritic Steel Claddings , 2009 .

[6]  K. Maeda,et al.  Behavior of Si impurity in Np-Am-MOX fuel irradiated in the experimental fast reactor Joyo , 2009 .

[7]  Hans Leo Lukas,et al.  Computational Thermodynamics: The Calphad Method , 2007 .

[8]  A. Mayorshin,et al.  Oxide Dispersion Strengthened (ODS) Fuel Pins Fabrication for BOR-60 Irradiation Test , 2005 .

[9]  M. Hillert,et al.  The sharpness of melting maxima , 1999 .

[10]  O. M. Sreedharan,et al.  Thermodynamic analysis of the Cs–Te system around the Cs2Te phase , 1998 .

[11]  E. Cordfunke,et al.  Thermodynamic properties of Cs5Te3 , 1997 .

[12]  H. Okamoto Cs-Te (cesium-tellurium) , 1996 .

[13]  P. Böttcher,et al.  Darstellung und Kristallstrukturen von β-Rb2Te2 und Cs2Te2 sowie die Verfeinerung der Strukturen von Ca2P2 und Sr2As2 , 1996 .

[14]  W. Sheldrick,et al.  Synthesis and structure of Cs2Te13 and Cs4Te28, tellurium-rich tellurides on the methanolothermal route to Cs3Te22 , 1996 .

[15]  L. Schäfer,et al.  Estimating the tensile properties of an austenitic cladding tube steel following corrosion by uranium dioxide, simultated fission products and neutron exposure , 1995 .

[16]  E. Cordfunke,et al.  On the caesium-rich part of the CsTe phase diagram , 1995 .

[17]  B. Argent,et al.  Review of heat capacity data for tellurium , 1995 .

[18]  R. J. Pulham,et al.  Chemical reactions of caesium, tellurium and oxygen with fast breeder reactor cladding alloys Part VII — The kinetics of the corrosion of 12R72HV steel by Cs2Te at a constant 02 potential; comparison with rates for PE16 alloy , 1995 .

[19]  W. S. Sheldrick,et al.  Isolierte kronenförmige Te8‐Ringe in Cs3Te22 , 1995 .

[20]  R. J. Pulham,et al.  Chemical reactions of caesium, tellurium and oxygen with fast breeder reactor cladding alloys Part VI—The kinetics of the corrosion of PE16 alloy by Cs2Te at a constant O2 potential , 1994 .

[21]  J. W. Hobbs,et al.  Simple preparation of the caesium telluride Cs2Te2 , 1994 .

[22]  S. Koyama,et al.  High temperature chemical reactions of Fe-Cr-Ni and Fe-Cr cladding alloys by Te, I2 and CsOH/CsI , 1993 .

[23]  A. Pelton,et al.  The Cs-Te (cesium-tellurium) system , 1993 .

[24]  T. B. Massalski,et al.  Thermodynamically Improbable Phase Diagrams , 1991 .

[25]  P. Böttcher,et al.  Synthesis and crystal structures of K5Se3, Cs5Te3 and Cs2Te , 1991 .

[26]  R. J. Pulham,et al.  Chemical reactions between caesium, tellurium and oxygen with fast breeder reactor cladding alloys: Part III — The effect of oxygen potential on the corrosion by caesium-tellurium mixtures , 1990 .

[27]  R. J. Pulham,et al.  Chemical reactions between caesium, tellurium and oxygen with fast breeder reactor cladding alloys: Part II — the corrosion by caesium-oxygen mixtures , 1990 .

[28]  R. Konings,et al.  Thermochemical data for reactor materials and fission products: The ECN database , 1990 .

[29]  R. J. Pulham,et al.  Chemical reactions of caesium, tellurium and oxygen with fast breeder reactor cladding alloys: Part IV — The corrosion of ferritic steels , 1990 .

[30]  R. J. Pulham,et al.  Chemical reactions of caesium, tellurium and oxygen with fast breeder reactor cladding alloys: Part I — The corrosion by tellurium , 1990 .

[31]  M. J. Quinn,et al.  A knudsen cell-mass spectrometer study of the vaporization of cesium telluride and cesium tellurite , 1989 .

[32]  C. Johnson,et al.  Mass spectrometry studies of fission product behavior: I. Fission products released from irradiated LWR fuel , 1988 .

[33]  E. Cordfunke,et al.  Standard enthalpies of formation of tellurium compounds II. Cs2Te , 1987 .

[34]  E. Cordfunke,et al.  The thermodynamic properties of di-caesium telluride, Cs2Te, from 5 to 800 K , 1987 .

[35]  E. Cordfunke,et al.  The vapour pressure of di-caesium telluride (Cs2Te) , 1986 .

[36]  E. A. Aitken,et al.  Chemical thermodynamics of Cs and Te fission product interactions in irradiated LMFBR mixed-oxide fuel pins , 1985 .

[37]  P. Böttcher,et al.  Darstellung und Kristallstruktur von CsTe4 , 1985 .

[38]  Mats Hillert,et al.  A two-sublattice model for molten solutions with different tendency for ionization , 1985 .

[39]  E. Cordfunke,et al.  Compounds in the system Cs-Te at room temperature , 1984 .

[40]  R. Kohli Heat capacity and thermodynamic properties of alkali metal compounds. III. Estimation of the thermodynamic properties of cesium and rubidium chalcogenides , 1983 .

[41]  M. Adamson,et al.  Solidus and liquidus temperatures in the Cs-Te system☆ , 1983 .

[42]  U. Kretschmann,et al.  Darstellung und Kristallstruktur von Dicaesiumpentatellurid, Cs2Te5† , 1982 .

[43]  H. W. King Crystal structures of the elements at 25°C , 1981 .

[44]  C. Johnson,et al.  Thermodynamic review and calculations—alkali-metal oxide systems with nuclear fuels, fission products, and structural materials , 1981 .

[45]  P. Böttcher Synthesis and crystal structure of Rb2Te3 and Cs2Te3 , 1980 .

[46]  E. Smart,et al.  Corrosion of stainless steel in the presence of caesium , 1975 .

[47]  Donald T. Hawkins,et al.  Selected Values of the Thermodynamic Properties of the Elements , 1973 .

[48]  O. Redlich,et al.  Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .

[49]  Alfred Bergmann Über die Darstellung und Eigenschaften von Caesium‐und Rubidium‐Sulfid, Selenid und Tellurid , 1937 .