Some numerical aspects of modelling flow around hydraulic structures using incompressible SPH

Here, we apply incompressible smoothed particle hydrodynamics (ISPH) to simulate free-surface flow around hydraulic structures using several classical case studies including dambreak, flow under a submerged gate, and simultaneous operation of a weir and gate. Due to many complexities such as unknown free-surface, rapidly varied flow, trans-critical flow, complicated geometry, and non-hydrostatic pressures, flow fields have traditionally been investigated by experimental methods, while powerful computational techniques such as ISPH are gradually being adopted for such studies. This research provides further details about the application of ISPH in this area. Two projection methods to enforce incompressibility of SPH were compared from mathematical and numerical view points. Further, two pressure formulations for approximating the left-hand-side of the Poisson equation resulted in a similar trend.

[1]  Xin Liu,et al.  An ISPH simulation of coupled structure interaction with free surface flows , 2014 .

[2]  Benedict D. Rogers,et al.  Numerical Modeling of Water Waves with the SPH Method , 2006 .

[3]  Mevlut Sami Akoz,et al.  Experimental and numerical modeling of a sluice gate flow , 2009 .

[4]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[5]  H. Suresh Rao,et al.  Finite element analysis of free surface flow through gates , 1996 .

[6]  A. Limache,et al.  Evaluation of weakly compressible SPH variants using derived analytical solutions of Taylor-Couette flows , 2013, Comput. Math. Appl..

[7]  Michael Dumbser,et al.  A new 3D parallel SPH scheme for free surface flows , 2009 .

[8]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[9]  John J. R. Williams,et al.  Finite element implementation of an improved conservative level set method for two-phase flow , 2014 .

[10]  Songdong Shao,et al.  Incompressible SPH flow model for wave interactions with porous media , 2010 .

[11]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[12]  Michael Dumbser,et al.  A diffuse interface method for complex three-dimensional free surface flows , 2013 .

[13]  Angela Ferrari,et al.  SPH simulation of free surface flow over a sharp-crested weir , 2010 .

[14]  Pep Español,et al.  Incompressible smoothed particle hydrodynamics , 2007, J. Comput. Phys..

[15]  José Alberto Cuminato,et al.  Evaluation of a bounded high order upwind scheme for 3D incompressible free surface flow computations , 2009, Math. Comput. Simul..

[16]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[17]  Murat Özbulut,et al.  A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows , 2014 .

[18]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[19]  Hua Liu,et al.  Application of SPH method on free surface flows on GPU , 2010 .

[20]  T. Wu,et al.  Numerical simulation of three dimensional tsunamis water waves generated by landlsides: comparison between physical model results, VOF, SPH and depth-integrated models , 2006 .

[21]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[22]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[23]  Leonardo Di G. Sigalotti,et al.  Adaptive kernel estimation and SPH tensile instability , 2008, Comput. Math. Appl..

[24]  Oguz Yilmaz,et al.  The initial stage of dam-break flow , 2009 .

[25]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[26]  Paul G. ChanelP.G. Chanel,et al.  Assessment of spillway modeling using computational fluid dynamics , 2008 .

[27]  Edmond Y.M. Lo,et al.  Simulation of near-shore solitary wave mechanics by an incompressible SPH method , 2002 .

[28]  L. Cascini,et al.  SPH run-out modelling of channelised landslides of the flow type , 2014 .

[29]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[30]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[31]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[32]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[33]  Vincenzo Casulli,et al.  Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems , 2002 .

[34]  Dominic E. Reeve,et al.  Numerical Simulation of Wave Overtopping Using an Incompressible SPH Method , 2006 .

[35]  A. J. Peterka,et al.  Hydraulic Design of Stilling Basins and Energy Dissipators , 1958 .

[36]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[37]  C. K. Thornhill,et al.  Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[38]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[39]  Songdong Shao,et al.  SPH simulation of solitary wave interaction with a curtain-type breakwater , 2005 .

[40]  S. Koshizuka,et al.  International Journal for Numerical Methods in Fluids Numerical Analysis of Breaking Waves Using the Moving Particle Semi-implicit Method , 2022 .

[41]  Behzad Ataie-Ashtiani,et al.  Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics , 2008 .

[42]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[43]  Taro Arikawa,et al.  On enhancement of Incompressible SPH method for simulation of violent sloshing flows , 2014 .

[44]  J. Monaghan,et al.  Solitary Waves on a Cretan Beach , 1999 .

[45]  Xin Liu,et al.  An improved incompressible SPH model for simulation of wave–structure interaction , 2013 .

[46]  Salvatore Marrone,et al.  Fast free-surface detection and level-set function definition in SPH solvers , 2010, J. Comput. Phys..

[47]  J. Monaghan SPH without a Tensile Instability , 2000 .

[48]  Yee-Chung Jin,et al.  A mesh-free particle model for simulation of mobile-bed dam break , 2011 .

[49]  Joseph John Monaghan,et al.  Gravity currents and solitary waves , 1996 .

[50]  Zhaochen Sun,et al.  Simulation of wave impact on a horizontal deck based on SPH method , 2010 .

[51]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[52]  Dominique Laurence,et al.  Incompressible separated flows simulations with the smoothed particle hydrodynamics gridless method , 2005 .

[53]  Hitoshi Gotoh,et al.  On particle-based simulation of a dam break over a wet bed , 2010 .