Size-controlled synthesis of porous ZnSnO3 cubes and their gas-sensing and photocatalysis properties

[1]  G. Lu,et al.  Porous SnO2 hierarchical nanosheets: hydrothermal preparation, growth mechanism, and gas sensing properties , 2011 .

[2]  Quanqin Zhao,et al.  Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection. , 2011, Nanoscale.

[3]  R. Khomane Microemulsion-mediated sol-gel synthesis of mesoporous rutile TiO2 nanoneedles and its performance as anode material for Li-ion batteries. , 2011, Journal of colloid and interface science.

[4]  Jinhuai Liu,et al.  Preparation of porous flower-like ZnO nanostructures and their gas-sensing property , 2011 .

[5]  Xiu-juan Xu,et al.  Hydrothermal synthesis of hollow ZnSnO3 microspheres and sensing properties toward butane , 2011 .

[6]  Shuyan Song,et al.  Porous Co3O4 microcubes: hydrothermal synthesis, catalytic and magnetic properties , 2011 .

[7]  B. Geng,et al.  Self-assembly fabrication of 3D porous quasi-flower-like ZnO nanostrip clusters for photodegradation of an organic dye with high performance , 2011 .

[8]  Bao-Lian Su,et al.  Self-formation phenomenon to hierarchically structured porous materials: design, synthesis, formation mechanism and applications. , 2011, Chemical communications.

[9]  L. Gao,et al.  From Three‐Dimensional Flower‐Like α‐Ni(OH)2 Nanostructures to Hierarchical Porous NiO Nanoflowers: Microwave‐Assisted Fabrication and Supercapacitor Properties , 2010 .

[10]  Hai-Wei Liang,et al.  Controlled Synthesis of One‐Dimensional Inorganic Nanostructures Using Pre‐Existing One‐Dimensional Nanostructures as Templates , 2010, Advanced materials.

[11]  高濂,et al.  From Three-Dimensional Flower-Like a-Ni(OH)2 Nanostructures to Hierarchical Porous NiO Nanoflowers: Microwave-Assisted Fabrication and Supercapacitor Properties , 2010 .

[12]  W. Cai,et al.  A versatile method for controlled synthesis of porous hollow spheres. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[13]  Y. Tong,et al.  Porous CeO2 nanowires/nanowire arrays: electrochemical synthesis and application in water treatment , 2010 .

[14]  Jie Liu,et al.  Size-Controlled Synthesis of ZnSnO3 Cubic Crystallites at Low Temperatures and Their HCHO-Sensing Properties , 2010 .

[15]  X. Duan,et al.  Photocatalytic Properties of Porous Silicon Nanowires. , 2010, Journal of materials chemistry.

[16]  Jinhuai Liu,et al.  Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property , 2010 .

[17]  Jiaqiang Xu,et al.  Synthesis and chlorine sensing properties of nanocrystalline hierarchical porous SnO2 by a phenol formaldehyde resin-assisted process , 2010 .

[18]  S. Anandan,et al.  Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices. , 2010, Chemical communications.

[19]  Mingyuan Ge,et al.  Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. , 2010, Journal of the American Chemical Society.

[20]  G. Lu,et al.  Synthesis and gas-sensing properties of ZnSnO3 cubic nanocages and nanoskeletons , 2009 .

[21]  G. Lu,et al.  One-Pot Synthesis and Gas-Sensing Properties of Hierarchical ZnSnO3 Nanocages , 2009 .

[22]  D. Leung,et al.  Hydroxide ZnSn(OH)6: A promising new photocatalyst for benzene degradation , 2009 .

[23]  J. Zou,et al.  A general single-source route for the preparation of hollow nanoporous metal oxide structures. , 2009, Angewandte Chemie.

[24]  P. Gao,et al.  Seedless Synthesis and Thermal Decomposition of Single Crystalline Zinc Hydroxystannate Cubes , 2009 .

[25]  Minghong Luo,et al.  Enhanced visible light photocatalytic activity of Zn2SnO4 via sulfur anion-doping , 2009 .

[26]  B. Geng,et al.  D-fructose molecule template route to ultra-thin ZnSnO3 nanowire architectures and their application as efficient photocatalyst. , 2009, Chemical communications.

[27]  G. Du,et al.  Hierarchical Porous Core−Shell Carbon Nanoparticles , 2009 .

[28]  K. Thomas,et al.  Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. , 2009, Dalton transactions.

[29]  B. Geng,et al.  Synthesis of polyhedral ZnSnO3 microcrystals with controlled exposed facets and their selective gas-sensing properties. , 2008, Small.

[30]  Qiang He,et al.  Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment , 2008 .

[31]  Voltaire G. Organo,et al.  Emerging host-guest chemistry of synthetic nanotubes. , 2007, Chemical communications.

[32]  C. Gu,et al.  Detection of volatile organic compounds by using a single temperature-modulated SnO2 gas sensor and artificial neural network , 2007 .

[33]  L.X. Yang,et al.  ZnO–SnO2 Hollow Spheres and Hierarchical Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Photocatalytic Properties , 2007 .

[34]  H. Haick,et al.  Controlling semiconductor/metal junction barriers by incomplete, nonideal molecular monolayers. , 2006, Journal of the American Chemical Society.

[35]  Quanshun Li,et al.  Electronic transport characteristics through individual ZnSnO3 nanowires , 2006 .

[36]  Jong‐San Chang,et al.  Low-temperature adsorption of hydrogen on nanoporous aluminophosphates: effect of pore size. , 2006, The journal of physical chemistry. B.

[37]  Q. Meng,et al.  Porous material for absorption and luminescent detection of aromatic molecules in water. , 2006, Chemical communications.

[38]  K. Aguir,et al.  Adsorption–desorption noise in gas sensors: Modelling using Langmuir and Wolkenstein models for adsorption , 2006 .

[39]  Jiaqiang Xu,et al.  One-step hydrothermal synthesis and gas sensing property of ZnSnO3 microparticles , 2006 .

[40]  Diane Henshel,et al.  An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties. , 2006, Environmental research.

[41]  A. Borovik,et al.  Confinement of metal complexes within porous hosts: development of functional materials for gas binding and catalysis. , 2005, Accounts of chemical research.

[42]  Steve Semancik,et al.  Porous tin oxide nanostructured microspheres for sensor applications. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[43]  Y. J. Chen,et al.  Synthesis and ethanol sensing properties of ZnSnO3 nanowires , 2005 .

[44]  W. Cao,et al.  Luminescence 3D-ordered porous materials composed of CdSe and CdTe nanocrystals. , 2005, The journal of physical chemistry. B.

[45]  T. Kutty,et al.  Ionic transport and structural investigations on MSn(OH)6 (M = Ba, Ca, Mg, Co, Zn, Fe, Mn) hydroxide perovskites synthesized by wet sonochemical methods , 2004 .

[46]  Xiuling Li,et al.  Hydrothermal synthesis and structural characterization of a novel hydroxo stannate: Sr2Sn(OH)8 , 2000 .

[47]  S K Kjaergaard,et al.  Sensory eye irritation in humans exposed to mixtures of volatile organic compounds. , 1999, Archives of environmental health.

[48]  I. Karube,et al.  Gas-Phase Biosensor for Ethanol , 1994 .

[49]  Younan Xia,et al.  Cover Picture: Shape‐Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? (Angew. Chem. Int. Ed. 1/2009) , 2009 .