The Proof Theory of Common Knowledge

Common knowledge of a proposition A can be characterized by the following infinitary conjunction: everybody knows A and everybody knows that everybody knows A and everybody knows that everybody knows that everybody knows A and so on. We present a survey of deductive systems for the logic of common knowledge. In particular, we present two different Hilbert-style axiomatizations and two infinitary cut-free sequent systems. Further we discuss the problem of syntactic cut-elimination for common knowledge. The paper concludes with a list of open problems.

[1]  Thomas Studer,et al.  Cyclic Proofs for Linear Temporal Logic , 2016 .

[2]  Thomas Studer,et al.  Syntactic cut-elimination for a fragment of the modal mu-calculus , 2012, Ann. Pure Appl. Log..

[3]  Thomas Wilke,et al.  Automata Logics, and Infinite Games , 2002, Lecture Notes in Computer Science.

[4]  Evangelia Antonakos Justified and Common Knowledge: Limited Conservativity , 2007, LFCS.

[5]  R. Aumann Agreeing to disagree. , 1976, Nature cell biology.

[6]  Thomas Studer,et al.  Cut-free common knowledge , 2007, J. Appl. Log..

[7]  K. Jon Barwise,et al.  The situation in logic , 1989, CSLI lecture notes series.

[8]  Gaëlle Fontaine Continuous Fragment of the mu-Calculus , 2008, CSL.

[9]  David Lewis Convention: A Philosophical Study , 1986 .

[10]  Thomas Studer,et al.  Common knowledge does not have the Beth property , 2009, Inf. Process. Lett..

[11]  Igor Walukiewicz,et al.  Games for the mu-Calculus , 1996, Theor. Comput. Sci..

[12]  Thomas Studer,et al.  Update as Evidence: Belief Expansion , 2013, LFCS.

[13]  W. van der Hoek,et al.  Epistemic logic for AI and computer science , 1995, Cambridge tracts in theoretical computer science.

[14]  Gerhard Jäger,et al.  Intuitionistic common knowledge or belief , 2016, J. Appl. Log..

[15]  Martin Lange,et al.  Focus games for satisfiability and completeness of temporal logic , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[16]  Polly S Nichols,et al.  Agreeing to disagree. , 2005, General dentistry.

[17]  Rajeev Goré,et al.  Cut-free Single-pass Tableaux for the Logic of Common Knowledge , 2007 .

[18]  Daniel Leivant,et al.  A Proof Theoretic Methodology for Propositional Dynamic Logic , 1981, ICFPC.

[19]  Thomas Studer,et al.  A Buchholz Rule for Modal Fixed Point Logics , 2011, Logica Universalis.

[20]  Thomas Studer,et al.  Justifications for common knowledge , 2010, J. Appl. Non Class. Logics.

[21]  Samuel Bucheli,et al.  Justification Logics with Common Knowledge , 2012 .

[22]  Martin Hofmann,et al.  A Proof System for the Linear Time µ-Calculus , 2006, FSTTCS.

[23]  Barbara Paech,et al.  Gentzen-Systems for Propositional Temporal Logics , 1988, CSL.

[24]  Jan van Eijck,et al.  Common knowledge in update logics , 2005, TARK.

[25]  E. Allen Emerson,et al.  An Automata Theoretic Decision Procedure for the Propositional Mu-Calculus , 1989, Inf. Comput..

[26]  Gerhard Jäger,et al.  About cut elimination for logics of common knowledge , 2005, Ann. Pure Appl. Log..

[27]  Sergei N. Artëmov Explicit provability and constructive semantics , 2001, Bull. Symb. Log..

[28]  F. Poggiolesi,et al.  Common knowledge: finite calculus with a syntactic cut-elimination procedure , 2015 .

[29]  Thomas Studer,et al.  Deduction chains for common knowledge , 2006, J. Appl. Log..

[30]  J. McCarthy,et al.  On the model theory of knowledge , 1978 .

[31]  Kai Br Deep Sequent Systems for Modal Logic , 2006 .

[32]  W. Buchholz The Ωμ+1-Rule , 1981 .

[33]  R. Kirk CONVENTION: A PHILOSOPHICAL STUDY , 1970 .

[34]  W. Pohlers Chapter IV – Subsystems of Set Theory and Second Order Number Theory , 1998 .

[35]  Thomas Studer,et al.  Justifications, Ontology, and Conservativity , 2012, Advances in Modal Logic.

[36]  David Janin Automata, logics, and infinite games: A guide to current research, edited by Erich Grädel, Wolfgang Thomas, and Thomas Wilke, Lecture Notes in Computer Science, vol. 2500 (Tutorial). Springer-Verlag, Berlin Heidelberg, 2002, viii + 385 pp. , 2004, Bulletin of Symbolic Logic.

[37]  Sergei N. Artëmov Justified common knowledge , 2006, Theor. Comput. Sci..

[38]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[39]  Thomas Studer,et al.  Two Ways to Common Knowledge , 2010, Electron. Notes Theor. Comput. Sci..

[40]  K. Jon Barwise,et al.  Three Views of Common Knowledge , 1988, TARK.

[41]  J. Avigad Proof Theory , 2017, 1711.01994.

[42]  G. Takeuti Proof Theory , 1975 .

[43]  Evangelia Antonakos,et al.  Explicit Generic Common Knowledge , 2013, LFCS.

[44]  Martin Lange,et al.  Cut-free sequent systems for temporal logic , 2008, J. Log. Algebraic Methods Program..

[45]  Joseph Y. Halpern,et al.  Knowledge and common knowledge in a distributed environment , 1984, JACM.

[46]  Rajeev Goré,et al.  And-Or Tableaux for Fixpoint Logics with Converse: LTL, CTL, PDL and CPDL , 2014, IJCAR.

[47]  Wolfram Pohlers Proof Theory: An Introduction , 1990 .

[48]  Thomas Studer,et al.  Syntactic cut-elimination for common knowledge , 2009, Ann. Pure Appl. Log..

[49]  Jaakko Hintikka,et al.  Knowledge and Belief: An Introduction to the Logic of the Two Notions. , 1965 .

[50]  Grigori Mints,et al.  Cut-elimination for the mu-calculus with one variable , 2012, FICS.

[51]  T. Schelling,et al.  The Strategy of Conflict. , 1961 .

[52]  Evangelia Antonakos Pairing Traditional and Generic Common Knowledge , 2016, LFCS.

[53]  Ryo Kashima,et al.  Cut-free sequent calculi for some tense logics , 1994, Stud Logica.