HEPLike: An open source framework for experimental likelihood evaluation

Abstract We present a computer framework to store and evaluate likelihoods coming from High Energy Physics experiments. Due to its flexibility it can be interfaced with existing fitting codes and allows to uniform the interpretation of the experimental results among users. The code is provided with large open database, which contains the experimental measurements. The code is of use for users who perform phenomenological studies, global fits or experimental averages. Program summary Program Title: HEPLike Program Files doi: http://dx.doi.org/10.17632/4wvfyp7zyt.1 Licensing provisions: GPLv3 Programming language: C++ Nature of problem: Provide a uniform way of store, share and evaluate experimental likelihoods in a proper statistical manner. The code can be easily interfaced with existing global fitting codes. In addition a large database with the measurements is published. The program targets users who perform in their scientific work: phenomenological studies, global fits or measurements averages. The HEPLike has been created for FlavBit project [1], which was used to perform several analysis [2,3] and here we present an updated version, which can be used in standalone mode. Solution method: C++ code that evaluates the statistical properties of the measurements without user intervention. The large open database is provided as well. The measurements are stored in YAML files allowing for easy readability and extensions. References arXiv:1705.07933 arXiv:1705.07935 arXiv:1705.07917

[1]  Jonathan M. Cornell,et al.  Global fits of GUT-scale SUSY models with GAMBIT , 2017, The European Physical Journal C.

[2]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[3]  C. Rogan,et al.  FlavBit: a GAMBIT module for computing flavour observables and likelihoods , 2017, 1705.07933.

[4]  Alan D. Martin,et al.  Review of Particle Physics , 2014 .

[5]  I. A. Monroy,et al.  EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) , 2010 .

[6]  R. Harr,et al.  Averages of b-hadron, c-hadron, and $$\tau $$τ-lepton properties as of summer 2016 , 2010, 1207.1158.

[7]  Search for the lepton flavour-violating decay μ→eγ , 2007 .

[8]  L. A. Granado Cardoso,et al.  Angular analysis of the B0 → K*0μ+μ− decay using 3 fb−1 of integrated luminosity , 2015, 1512.04442.

[9]  L. A. Granado Cardoso,et al.  Measurement of the B_{s}^{0}→μ^{+}μ^{-} Branching Fraction and Effective Lifetime and Search for B^{0}→μ^{+}μ^{-} Decays. , 2017, Physical review letters.

[10]  Jonathan M. Cornell,et al.  GAMBIT: the global and modular beyond-the-standard-model inference tool , 2018, The European Physical Journal C.

[11]  L. A. Granado Cardoso,et al.  Search for the Decays B_{s}^{0}→τ^{+}τ^{-} and B^{0}→τ^{+}τ^{-}. , 2017, Physical review letters.

[12]  L. A. Granado Cardoso,et al.  Search for Lepton-Universality Violation in B^{+}→K^{+}ℓ^{+}ℓ^{-} Decays. , 2019, Physical review letters.

[13]  F. Mahmoudi,et al.  New constraints on supersymmetric models from b ---> s gamma , 2007, 0710.3791.

[14]  Jonathan M. Cornell,et al.  GAMBIT: the global and modular beyond-the-standard-model inference tool , 2017, The European Physical Journal C.

[15]  R. Watanabe,et al.  Combined explanations of the b→sμ+μ− and b→cτ−ν¯ anomalies: A general model analysis , 2018, Physical Review D.

[16]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[17]  Alan D. Martin,et al.  Review of Particle Physics , 2018, Physical Review D.

[18]  Lorenzo Moneta,et al.  ROOT - A C++ framework for petabyte data storage, statistical analysis and visualization , 2009, Comput. Phys. Commun..

[20]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[21]  Scoap Angular analysis of the B 0 → K *0 μ + μ − decay using 3 fb −1 of integrated luminosity , 2016 .

[22]  C. LHCb,et al.  Differential branching fraction and angular moments analysis of the decay $B^0 \to K^+ π^- μ^+ μ^-$ in the $K^*_0,2(1430)^0$ region , 2016 .

[23]  T. Feldmann,et al.  Revisiting B → ππℓν at large dipion masses , 2018, Journal of High Energy Physics.

[24]  Jonathan M. Cornell,et al.  A global fit of the MSSM with GAMBIT , 2017, The European Physical Journal C.

[25]  Scoap Test of lepton universality with B 0 → K *0 ℓ + ℓ − decays , 2017 .

[26]  L. A. Granado Cardoso,et al.  Test of lepton universality using b+ → K+ℓ+ℓ- decays. , 2014, Physical review letters.

[27]  Lukas Heinrich,et al.  HEPData: a repository for high energy physics data , 2017, ArXiv.

[29]  I. A. Monroy,et al.  Angular analysis of the $B^{0}\rightarrow K^{*0}μ^{+}μ^{-}$ decay , 2015 .

[30]  L. A. Granado Cardoso,et al.  Measurement of forward W → eν production in pp collisions at s=8$$ \sqrt{s}=8 $$ TeV , 2016, 1608.01484.

[31]  A. Read Modified frequentist analysis of search results (The CL(s) method) , 2000 .

[33]  A. Vollhardt,et al.  Measurements of the S-wave fraction in $B^0 \to K^+\pi^−\mu^+\mu^−$ decays and the $B^0 \to K^∗(892)^0\mu^+\mu^−$ differential branching fraction , 2016 .

[34]  A. Roeck,et al.  Likelihood analysis of the sub-GUT MSSM in light of LHC 13-TeV data , 2017, 1711.00458.

[35]  Asymmetric Systematic Errors , 2003, physics/0306138.

[36]  Peter Wienemann,et al.  Fittino, a program for determining MSSM parameters from collider observables using an iterative method , 2006, Comput. Phys. Commun..

[37]  M. Kelsey,et al.  Test of lepton universality with B 0 → K *0 ℓ + ℓ − decays , 2017, 1705.05802.

[38]  Bayesian versus frequentist upper limits , 2011, 1103.2987.