Grain boundary segregation and fracture resistance of engineering steels

The developments in surface analytical techniques and experimental measurements have made it possible to understand grain boundary segregation processes and related fracture mechanisms. This article shows how experimental contributions have led to the concept of grain boundary segregation isotherms for a complete understanding of grain boundary segregation behavior, and its effect on material properties in terms of the kinetics of segregation, the interaction processes amongst trace and solute elements and the influence of solute elements, heat treatment practice and applied tensile stress on grain boundary segregation processes. The determining role of grain boundary chemistry in obtaining a marked improvement in toughness of engineering steels at the specified levels of strength is elucidated here. Copyright © 2001 John Wiley & Sons, Ltd.

[1]  R. Misra,et al.  On the dynamic embrittlement of copper-chromium alloys by sulphur , 2000 .

[2]  R. Misra,et al.  Kinetics of cold work embrittlement in rephosphorised, interstitial free steels , 2000 .

[3]  C. Mcmahon,et al.  Tin-induced dynamic embrittlement of Cu-7% Sn bicrystals with a Σ5 boundary , 1999 .

[4]  R. Misra The effect of pre-segregation of phosphorus on the dynamic embrittlement of iron-vanadium alloys at 550 °C in air , 1996 .

[5]  R. Misra,et al.  Dynamic embrittlement in an age-hardenable copper-chromium alloy , 1996 .

[6]  R. Misra Issues concerning the effects of applied tensile stress on intergranular segregation in a low alloy steel , 1996 .

[7]  Harold Mindlin,et al.  Aerospace structural metals handbook , 1995 .

[8]  C. Mcmahon,et al.  Brittle behavior of a dilute copper-beryllium alloy at 200°C in air , 1994 .

[9]  G. Malakondaiah,et al.  Influence of solute additions on the fracture behaviour of Armco iron , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[10]  A. J. Freeman,et al.  First Principles Determination of the Effects of Phosphorus and Boron on Iron Grain Boundary Cohesion , 1994, Science.

[11]  R. Misra,et al.  An analysis of grain boundary cohesion in precipitation hardened stainless steel , 1993 .

[12]  R. Misra,et al.  Influence of temperature upon grain boundary segregation processes in low alloy steels , 1993 .

[13]  R. Misra,et al.  Grain boundary segregation in a low alloy steel under tensile loading conditions , 1992 .

[14]  R. Misra,et al.  On the grain boundary chemistry of chromium containing martensitic steels , 1991 .

[15]  R. Misra An observation concerning the contribution of temperature on the behaviour of grain boundary segregants for varied microstructures in a NiCrMoV steel , 1991 .

[16]  C. Mcmahon,et al.  Diffusion-controlled decohesion using a Cu-Sn alloy as a model system , 1991 .

[17]  R. Misra,et al.  Effects of microstructure on grain boundary segregation processes in low alloy steels , 1990 .

[18]  R. Misra,et al.  Stress enhanced grain boundary segregation of impurity elements in a low alloy steel , 1990 .

[19]  S. Dikshit,et al.  On mixed upper bainite-martensite in an AISI 4330 steel exhibiting an uncommonly improved strength-toughness combination , 1990 .

[20]  R. Misra,et al.  Co-operative and site-competitive interaction processes at the grain boundaries of a Ni-Cr-Mo-V steel , 1989 .

[21]  James R. Rice,et al.  Embrittlement of interfaces by solute segregation , 1989 .

[22]  C. Scruby,et al.  A study of the dynamics of high temperature brittle intergranular fracture by acoustic emission , 1988 .

[23]  R. Misra,et al.  Effect of post-aging quenching treatment on impact toughness of 17-4 precipitation hardened stainless steel , 1988 .

[24]  R. Misra,et al.  On interactions amongst trace and alloying elements at the grain boundaries of a low alloy steel , 1987 .

[25]  C. A. Hippsley Sulphur segregation and high-temperature brittle intergranular fracture in alloy steels , 1987 .

[26]  R. Misra,et al.  On variation of impact toughness in 17-4 precipitation hardened stainless steel , 1987 .

[27]  J. Knott,et al.  Effects of impurity segregation and test environment on sustained load cracking of 214-Cr-1Mo steel—II. Crack propagation , 1987 .

[28]  J. Knott,et al.  Effects of impurity segregation on sustained load cracking of 214 Cr-1Mo steels—I. Crack initiation , 1987 .

[29]  I. Chen Quasi-static intergranular brittle fracture at 0.5 tm: A non-equilibrium segregation mechanism of sulphur embrittlement in stress-relief cracking of low-alloy steels , 1986 .

[30]  G. T. Burstein,et al.  Interactions amongst segregants on the surface of a low alloy steel , 1985 .

[31]  C. Mcmahon,et al.  Mechanisms of stress relief cracking in a ferritic steel , 1984 .

[32]  H. Rauh,et al.  Stress-driven solute enrichment of crack-tips during low-ductility intergranular fracture of low-alloy steel , 1984 .

[33]  C. Mcmahon,et al.  Comparison of stress relief cracking in A 508 2 and A 533 B pressure vessel steels , 1984 .

[34]  J. Knott,et al.  Effects of segregation on brittle fracture and fatigue crack growth in coarse-grained, martensitic A533B pressure vessel steel , 1984 .

[35]  C. Lea Rationalization of impact energies of commercial steels having different impurity levels and heat treatments , 1983 .

[36]  C. Briant,et al.  Caustic stress corrosion cracking of NiCrMoV rotor steels—The effects of impurity segregation and variation in alloy composition , 1983 .

[37]  Jin Yu,et al.  Effects of P addition on creep of 1 Cr−Mo−V steels , 1983 .

[38]  J. I. Ustinovshchikov On temper embrittlement of steels , 1983 .

[39]  G. T. Burstein,et al.  Effects of segregated phosphorus on stress corrosion cracking susceptibility of 3Cr–0·5Mo steel , 1983 .

[40]  M. Guttmann Interfacial Segregation in Multicomponent Systems , 1983 .

[41]  J. Knott,et al.  A study of stress relief cracking in 214 Cr 1 Mo steel—II. The effects of multi-component segregation , 1982 .

[42]  C. Briant,et al.  The Effect of Phosphorus on Intergranular Caustic Cracking of NiCr Steel , 1982 .

[43]  H. Grabke,et al.  Equilibrium segregation of phosphorus at grain boundaries of Fe–P, Fe–C–P, Fe–Cr–P, and Fe–Cr–C–P alloys , 1981 .

[44]  J. Knott,et al.  A study of stress relief cracking in 214Cr 1 Mo steel—I. The effects of P segregation , 1980 .

[45]  M. Guttmann The Role of Residuals and Alloying Elements in Temper Embrittlement , 1980 .

[46]  M. Guttmann,et al.  The influence of chemical interactions between metallic and metalloid solutes on their segregation in α-Fe I: Co-segregation at free surface studied by Auger electron spectroscopy , 1980 .

[47]  B. Eyre,et al.  Ni-Sn interaction in temper embrittled steel detected by Mössbauer spectroscopy , 1977, Nature.

[48]  C. Mcmahon,et al.  Temper embrittlement of Ni-Cr steel by Sn , 1977 .

[49]  G. Spink Reversible temper embrittlement of rotor steels , 1977 .

[50]  M. Seah,et al.  Kinetics of surface segregation , 1977 .

[51]  H. Warlimont,et al.  On a metastable miscibility gap in γ-Mn-Cu alloys and the origin of their high damping capacity , 1976 .

[52]  P. R. Krahe,et al.  On the segregation of manganese and antimony to the grain boundaries of temper embrittled steel , 1973 .

[53]  C. Wert Diffusion Coefficient of C in α -Iron , 1950 .