Interval Arithmetic, Affine Arithmetic, Taylor Series Methods: Why, What Next?

In interval computations, the range of each intermediate result r is described by an interval r. To decrease excess interval width, we can keep some information on how r depends on the input x=(x1,...,xn). There are several successful methods of approximating this dependence; in these methods, the dependence is approximated by linear functions (affine arithmetic) or by general polynomials (Taylor series methods). Why linear functions and polynomials? What other classes can we try? These questions are answered in this paper.

[1]  Martin Berz,et al.  Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models , 1998, Reliab. Comput..

[2]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[3]  Vladik Kreinovich,et al.  “Interval rational = algebraic” revisited: a more computer realistic result , 1996, SGNM.

[4]  Martin Berz,et al.  Verification of Invertibility of Complicated Functions over Large Domains , 2002, Reliab. Comput..

[5]  Victor A. Brumberg,et al.  Analytical Techniques of Celestial Mechanics , 1995 .

[6]  E. R. Hansen,et al.  A Generalized Interval Arithmetic , 1975, Interval Mathematics.

[7]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[8]  Martin Berz,et al.  Verified integration of dynamics in the solar system , 2001 .

[9]  Martin Berz,et al.  Computation and Application of Taylor Polynomials with Interval Remainder Bounds , 1998, Reliab. Comput..

[10]  Vladik Kreinovich,et al.  Candidate Sets for Complex Interval Arithmetic , 1999 .

[11]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[12]  R. Lohner Einschliessung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen , 1988 .

[13]  R. B. Kearfott,et al.  Applications of interval computations , 1996 .

[14]  Vladik Kreinovich,et al.  Applications of Continuous Mathematics to Computer Science , 1997 .

[15]  Vladik Kreinovich,et al.  On a Theoretical Justification of the Choice of Epsilon-Inflation in PASCAL-XSC , 1997, Reliab. Comput..

[16]  K. Knopp Theory of Functions , 1958 .

[17]  Jeff Tupper,et al.  Reliable two-dimensional graphing methods for mathematical formulae with two free variables , 2001, SIGGRAPH.

[18]  Nedialko S. Nedialkov,et al.  An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation , 1998, SCAN.

[19]  Vladik Kreinovich,et al.  An Optimality Criterion for Arithmetic of Complex Sets , 1999 .

[20]  Jürgen Garloff,et al.  Solution of Systems of Polynomial Equation by Using Bernstein Expansion , 2001, Symbolic Algebraic Methods and Verification Methods.

[21]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[22]  John D. Pryce,et al.  An Effective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an ODE , 2001, Reliab. Comput..

[23]  De Figueiredo,et al.  Self-validated numerical methods and applications , 1997 .

[24]  N. Nedialkov,et al.  {22 () an Interval Hermite-obreschkoo Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Diierential Equation * , 1998 .

[25]  Vladik Kreinovich,et al.  Theoretical Justification of a Heuristic Subbox Selection Criterion , 2001 .

[26]  Markus Neher,et al.  Geometric Series Bounds for the Local errors of Taylor Methods for Linear n-th-Order ODEs , 2001, Symbolic Algebraic Methods and Verification Methods.

[27]  Vladik Kreinovich,et al.  Where to Bisect a Box? A Theoretical Explanation of the Experimental Results , 1998 .

[28]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[29]  Vladik Kreinovich Interval rational = algebraic , 1995, SGNM.