Enzyme microarrays assembled by acoustic dispensing technology.

[1]  S. P. Fodor,et al.  Light-generated oligonucleotide arrays for rapid DNA sequence analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Thomas D. Y. Chung,et al.  A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays , 1999, Journal of biomolecular screening.

[3]  S. Schreiber,et al.  Printing proteins as microarrays for high-throughput function determination. , 2000, Science.

[4]  J. Wölcke,et al.  Miniaturized HTS technologies - uHTS. , 2001, Drug discovery today.

[5]  A. Pope,et al.  Simple Absorbance-Based Assays for Ultra-High Throughput Screening , 2001, Journal of biomolecular screening.

[6]  M. Lesaicherre,et al.  Antibody-based fluorescence detection of kinase activity on a peptide array. , 2002, Bioorganic & medicinal chemistry letters.

[7]  Gavin MacBeath,et al.  Protein microarrays and proteomics , 2002, Nature Genetics.

[8]  Cristian J A Asensio,et al.  Determination of a large number of kinase activities using peptide substrates, P81 phosphocellulose paper arrays and phosphor imaging. , 2003, Analytical biochemistry.

[9]  Scott L Diamond,et al.  Printing chemical libraries on microarrays for fluid phase nanoliter reactions , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Goueli,et al.  A homogeneous, nonradioactive high-throughput fluorogenic protein kinase assay. , 2003, Analytical biochemistry.

[11]  B. Strulovici,et al.  Miniaturization of Intracellular Calcium Functional Assays to 1536-Well Plate Format Using a Fluorometric Imaging Plate Reader , 2004, Journal of biomolecular screening.

[12]  E. Meggers,et al.  Ruthenium complexes as protein kinase inhibitors. , 2004, Organic letters.

[13]  James R Beasley,et al.  Miniaturized, ultra-high throughput screening of tyrosine kinases using homogeneous, competitive fluorescence immunoassays. , 2004, Assay and drug development technologies.

[14]  A. Bottoni,et al.  Utilization of luminescent technology to develop a kinase assay: Cdk4 as a model system. , 2005, Journal of pharmaceutical and biomedical analysis.

[15]  Scott L Diamond,et al.  Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays , 2005, Proteomics.

[16]  M. Vieth,et al.  Kinomics: characterizing the therapeutically validated kinase space. , 2005, Drug discovery today.

[17]  T. Möröy,et al.  The serine/threonine kinase Pim-1. , 2005, The international journal of biochemistry & cell biology.

[18]  Catherine Situma,et al.  Merging microfluidics with microarray-based bioassays. , 2006, Biomolecular engineering.

[19]  H. Bregman,et al.  Ruthenium half-sandwich complexes as protein kinase inhibitors: an N-succinimidyl ester for rapid derivatizations of the cyclopentadienyl moiety. , 2006, Organic letters.

[20]  S. Diamond,et al.  Microarrays for the Functional Analysis of the Chemical-Kinase Interactome , 2006, Journal of biomolecular screening.

[21]  Eric Meggers,et al.  Rapid access to unexplored chemical space by ligand scanning around a ruthenium center: discovery of potent and selective protein kinase inhibitors. , 2006, Journal of the American Chemical Society.

[22]  Michael C. Myers,et al.  Identification and synthesis of a unique thiocarbazate cathepsin L inhibitor. , 2008, Bioorganic & medicinal chemistry letters.