Rewiring of Prelimbic Inputs to the Nucleus Accumbens Core Underlies Cocaine-Induced Behavioral Sensitization

[1]  Yiming Zhou,et al.  A distinct D1-MSN subpopulation down-regulates dopamine to promote negative emotional state , 2021, Cell Research.

[2]  A. Nishi,et al.  Distinct Role of Dopamine in the PFC and NAc During Exposure to Cocaine-Associated Cues , 2021, The international journal of neuropsychopharmacology.

[3]  C. Lüscher,et al.  Dynamic dichotomy of accumbal population activity underlies cocaine sensitization , 2021, bioRxiv.

[4]  Yiming Zhou,et al.  The Projection From Ventral CA1, Not Prefrontal Cortex, to Nucleus Accumbens Core Mediates Recent Memory Retrieval of Cocaine-Conditioned Place Preference , 2020, Frontiers in Behavioral Neuroscience.

[5]  Yiming Zhou,et al.  A ventral CA1 to nucleus accumbens core engram circuit mediates conditioned place preference for cocaine , 2019, Nature Neuroscience.

[6]  Laura M McGarry,et al.  The Projection Targets of Medium Spiny Neurons Govern Cocaine-Evoked Synaptic Plasticity in the Nucleus Accumbens , 2019, Cell reports.

[7]  Kirstie A. Cummings,et al.  Prefrontal somatostatin interneurons encode fear memory , 2019, bioRxiv.

[8]  M. Gutnick,et al.  Role of sodium channel subtype in action potential generation by neocortical pyramidal neurons , 2018, Proceedings of the National Academy of Sciences.

[9]  A. Juavinett,et al.  Specialized Subpopulations of Deep-Layer Pyramidal Neurons in the Neocortex: Bridging Cellular Properties to Functional Consequences , 2018, The Journal of Neuroscience.

[10]  Joseph J. Marlin,et al.  Cell-Type Specificity of Callosally Evoked Excitation and Feedforward Inhibition in the Prefrontal Cortex , 2018, Cell reports.

[11]  Hugues Berry,et al.  Endocannabinoids mediate bidirectional striatal spike‐timing‐dependent plasticity , 2015, The Journal of physiology.

[12]  P. Kalivas,et al.  Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections , 2015, Nature Neuroscience.

[13]  A. G. Carter,et al.  Cocaine exposure reorganizes cell type– and input-specific connectivity in the nucleus accumbens , 2014, Nature Neuroscience.

[14]  R. Empson,et al.  Diversity of layer 5 projection neurons in the mouse motor cortex , 2013, Front. Cell. Neurosci..

[15]  Kelly R. Tan,et al.  Cocaine Disinhibits Dopamine Neurons by Potentiation of GABA Transmission in the Ventral Tegmental Area , 2013, Science.

[16]  R. Chitwood,et al.  Dendritic Generation of mGluR-Mediated Slow Afterdepolarization in Layer 5 Neurons of Prefrontal Cortex , 2013, The Journal of Neuroscience.

[17]  Nicole Calakos,et al.  Presynaptic long-term plasticity , 2013, Front. Synaptic Neurosci..

[18]  C. Gremel,et al.  Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use , 2013, Nature Neuroscience.

[19]  James M. Otis,et al.  Neurobiological Dissociation of Retrieval and Reconsolidation of Cocaine-Associated Memory , 2013, The Journal of Neuroscience.

[20]  Brian R. Lee,et al.  Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine , 2012, Proceedings of the National Academy of Sciences.

[21]  S. Nakanishi,et al.  Pathway-specific modulation of nucleus accumbens in reward and aversive behavior via selective transmitter receptors , 2012, Proceedings of the National Academy of Sciences.

[22]  E. Simpson Faculty Opinions recommendation of Distinct roles for direct and indirect pathway striatal neurons in reinforcement. , 2012 .

[23]  Adam G. Carter,et al.  D1 Receptor Modulation of Action Potential Firing in a Subpopulation of Layer 5 Pyramidal Neurons in the Prefrontal Cortex , 2012, The Journal of Neuroscience.

[24]  Karl Deisseroth,et al.  Synaptic Activity Unmasks Dopamine D2 Receptor Modulation of a Specific Class of Layer V Pyramidal Neurons in Prefrontal Cortex , 2012, The Journal of Neuroscience.

[25]  C. Lüscher,et al.  Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour , 2011, Nature.

[26]  Taro Kiritani,et al.  Corticospinal-specific HCN expression in mouse motor cortex: I(h)-dependent synaptic integration as a candidate microcircuit mechanism involved in motor control. , 2011, Journal of neurophysiology.

[27]  P. Kalivas,et al.  Drug Wanting: Behavioral Sensitization and Relapse to Drug-Seeking Behavior , 2011, Pharmacological Reviews.

[28]  Daniel Johnston,et al.  Projection-Specific Neuromodulation of Medial Prefrontal Cortex Neurons , 2010, The Journal of Neuroscience.

[29]  R. Malenka,et al.  Postsynaptic TRPV1 triggers cell type–specific long-term depression in the nucleus accumbens , 2010, Nature Neuroscience.

[30]  S. Nakanishi,et al.  Distinct Roles of Synaptic Transmission in Direct and Indirect Striatal Pathways to Reward and Aversive Behavior , 2010, Neuron.

[31]  R. LaLumiere,et al.  Glutamate transmission in addiction , 2009, Neuropharmacology.

[32]  S. Schiffmann,et al.  D2R striatopallidal neurons inhibit both locomotor and drug reward processes , 2009, Nature Neuroscience.

[33]  Rafael Yuste,et al.  Persistently Active, Pacemaker-Like Neurons in Neocortex , 2007, Front. Neurosci..

[34]  J. Seamans,et al.  Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling. , 2007, Journal of neurophysiology.

[35]  S. Hyman,et al.  Neural mechanisms of addiction: the role of reward-related learning and memory. , 2006, Annual review of neuroscience.

[36]  R. Malenka,et al.  Cocaine-Induced Plasticity of Intrinsic Membrane Properties in Prefrontal Cortex Pyramidal Neurons: Adaptations in Potassium Currents , 2005, The Journal of Neuroscience.

[37]  Jason M. Williams,et al.  Cocaine increases medial prefrontal cortical glutamate overflow in cocaine‐sensitized rats: a time course study , 2004, The European journal of neuroscience.

[38]  P. Goldman-Rakic,et al.  D2 receptor regulation of synaptic burst firing in prefrontal cortical pyramidal neurons. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  W. Schmidt,et al.  Glutamatergic mechanisms in addiction , 2003, Molecular Psychiatry.

[40]  B. Everitt,et al.  Dissociable Effects of Antagonism of NMDA and AMPA/KA Receptors in the Nucleus Accumbens Core and Shell on Cocaine-seeking Behavior , 2001, Neuropsychopharmacology.

[41]  F. Conquet,et al.  Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice , 2001, Nature Neuroscience.

[42]  P. O’Donnell,et al.  D(1) dopamine receptors potentiate nmda-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. , 2001, Cerebral cortex.

[43]  D. Jaffe,et al.  Dopamine Decreases the Excitability of Layer V Pyramidal Cells in the Rat Prefrontal Cortex , 1998, The Journal of Neuroscience.

[44]  P. Kalivas,et al.  Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine , 1997, Neuroscience.

[45]  D. L. Davidson,et al.  Repeated daily cocaine alters subsequent cocaine-induced increase of extracellular dopamine in the medial prefrontal cortex. , 1997, The Journal of pharmacology and experimental therapeutics.

[46]  E. Kandel,et al.  Nitric Oxide Acts Directly in the Presynaptic Neuron to Produce Long-Term Potentiationin Cultured Hippocampal Neurons , 1996, Cell.

[47]  CR Yang,et al.  Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  V. Meininger,et al.  A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. , 1994, The New England journal of medicine.

[49]  D. S. Zahm,et al.  The patterns of afferent innervation of the core and shell in the “Accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro‐gold , 1993, The Journal of comparative neurology.

[50]  D. S. Zahm,et al.  Specificity in the projection patterns of accumbal core and shell in the rat , 1991, Neuroscience.

[51]  A. Grace,et al.  Cortico-Basal Ganglia Reward Network: Microcircuitry , 2010, Neuropsychopharmacology.

[52]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.