A REVIEW OF SPRAY IGNITION PHENOMENON

Theoretical and experimental studies dealing with the spray ignition phenomenon are reviewed. Topics related to external-source ignition and spontaneous ignition in liquid fuel sprays are covered. An attempt is made to provide a common link between the spray ignition, individual droplet ignition, and droplet cluster ignition. In a similar way, common features of external-source ignition and spontaneous ignition in sprays are identified. Available experimental data for the model validation is also presented. Potential topics for further research are suggested.

[1]  J. Griffiths,et al.  Thermokinetic interactions: Fundamentals of spontaneous ignition and cool flames , 1987 .

[2]  Makoto Ikegami,et al.  A study of the ignition delay of diesel fuel spray using a rapid compression machine. , 1987 .

[3]  Tinggang Li,et al.  The action of ignition improvers in diesel fuels , 1988 .

[4]  N. Cernansky,et al.  Droplet size and equivalence ratio effects on spark ignition of monodisperse N-heptane and methanol sprays , 1988 .

[5]  L. Kirsch,et al.  The autoignition of hydrocarbon fuels at high temperatures and pressures—Fitting of a mathematical model , 1977 .

[6]  A. Cavaliere,et al.  Autoignition of n-heptane and n-tetradecane in engine-like conditions , 1993 .

[7]  Dennis L. Siebers,et al.  A Study of the Autoignition Process of a Diesel Spray via High Speed Visualization , 1992 .

[8]  A. Lefebvre,et al.  Ignition and flame quenching of quiescent fuel mists , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  A. Lefebvre,et al.  Minimum ignition energies in flowing kerosine-air mixtures , 1976 .

[10]  S. Aggarwal,et al.  Ignition of Polydisperse Sprays: Importance of D20 , 1986 .

[11]  W. Sirignano,et al.  Ignition of fuel sprays: Deterministic calculations for idealized droplet arrays , 1985 .

[12]  E. Gutheil Numerical investigation of the ignition of dilute fuel sprays including detailed chemistry , 1993 .

[13]  M. Sichel,et al.  Sheath combustion of sprays , 1985 .

[14]  Frederick L. Dryer,et al.  High-temperature oxidation of CO and CH4 , 1973 .

[15]  J. Burgoyne,et al.  The effect of drop size on flame propagation in liquid aerosols , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  H. Sommer Ignition studies of fuel droplet streams , 1988 .

[17]  A. Lingens,et al.  A reduced thermokinetic model for the autoignition of fuels with variable octane ratings , 1994 .

[18]  Jürgen Warnatz,et al.  A detailed chemical kinetic reaction mechanism for the oxidation of iso-octane and n-heptane over an extended temperature range and its application to analysis of engine knock , 1989 .

[19]  A. Yule Large-scale structure in the mixing layer of a round jet , 1978, Journal of Fluid Mechanics.

[20]  C. Polymeropoulos,et al.  The effect of droplet size on the burning velocity of kerosene-air sprays☆ , 1975 .

[21]  Song-Charng Kong,et al.  Multidimensional Modeling of Diesel Ignition and Combustion Using a Multistep Kinetics Model , 1993 .

[22]  C. Polymeropoulos,et al.  Spark ignition of aerosols , 1988 .

[23]  J. Sato,et al.  Ignition process of fuel spray injected into high pressure high temperature atmosphere , 1988 .

[24]  M. Ribaucour,et al.  Autoignition of butane: A burner and a rapid compression machine study , 1991 .

[25]  L. J. Spadaccini,et al.  Ignition delay characteristics of methane fuels , 1994 .

[26]  A. H. Lefebvre,et al.  A general model of spark ignition for gaseous and liquid fuel-air mixtures , 1981 .

[27]  C. Westbrook,et al.  Auto-ignition temperatures of binary mixtures of alkanes in a closed vessel: Comparisons between experimental measurements and numerical predictions , 1991 .

[28]  S. Aggarwal Chemical-kinetics modeling for the ignition of idealized sprays , 1987 .

[29]  Charles K. Westbrook,et al.  Chemical kinetics and modeling of combustion processes , 1981 .

[30]  H. Hiroyasu,et al.  EFFECTS OF CYLINDER TEMPERATURE AND PRESSURE ON IGNITION DELAY IN DIRECT INJECTION DIESEL ENGINE , 1989 .

[31]  W. R. Laster,et al.  IGNITION DELAY OF DROPLET CLOUDS: RESULTS FROM GROUP COMBUSTION THEORY , 1991 .

[32]  Y. Mizutani,et al.  Combustion of fuel vapor-drop-air systems: Part I—Open burner flames , 1973 .

[33]  J. Griffiths,et al.  Pressure and concentration dependences of the autoignition temperature for normal butane + air mixtures in a closed vessel , 1994 .

[34]  S. Aggarwal,et al.  A parametric study on spray ignition and comparison with experiments , 1988 .

[35]  Kalyan Annamalai,et al.  Interactive processes in gasification and combustion. Part I: Liquid drop arrays and clouds , 1992 .

[36]  Nicholas P. Cernansky,et al.  Spark ignition of a bidisperse, n-decane fuel spray , 1991 .

[37]  A. Lefebvre,et al.  Ignition and flame quenching of flowing heterogeneous fuel-air mixtures , 1979 .

[38]  N. Ashgriz,et al.  Ignition Probability and Absolute Minimum Ignition Energy in Fuel Sprays , 1992 .

[39]  A. Sarofim,et al.  Ignition and Combustion of Liquid Fuel Droplets. Part I: Impact on Pollutant Formation , 1986 .

[40]  Charles K. Westbrook,et al.  Hydrocarbon ignition: Automatic generation of reaction mechanisms and applications to modeling of engine knock , 1992 .

[41]  L. J. Spadaccini,et al.  Autoignition Characteristics of Hydrocarbon Fuels at Elevated Temperatures and Pressures , 1977 .

[42]  William A. Sirignano,et al.  A comparison of vaporization models in spray calculations , 1984 .

[43]  E. Gutheil Numerical analysis of the autoignition of methanol, ethanol, n-heptane and n-octane sprays with detailed chemistry , 1995 .

[44]  S. Aggarwal,et al.  Ignition of a Fuel Spray by Hot Surfaces in a Constant Volume Combustor , 1990 .