Post-collision interaction manifestation in molecular systems probed by photoelectron-molecular ion coincidences

S1s photoionization in carbonyl sulfide (OCS), followed by multiple Auger decay is investigated both experimentally and theoretically, by means of photoelectron–ion coincidences. A strong influence of post-collision interaction is observed in the energy shift and the distortion of the photoelectron spectra. The magnitude of this effect depends on the total charge of the ionic fragments, i.e., on the number of electrons emitted during the decay of the inner vacancy. A satisfactory agreement is found between experiment and theory, which allows us to estimate the lifetimes of the various two-hole states of the intermediate OCS2 + ion.

[1]  R. Guillemin,et al.  Double momentum spectrometer for ion-electron vector correlations in dissociative photoionization. , 2013, The Review of scientific instruments.

[2]  M. Huttula,et al.  Decay of a 2p inner-shell hole in an Ar+ ion , 2013, Physical review letters.

[3]  M. Stener,et al.  Molecular-frame photoelectron angular distribution imaging studies of OCS S1s photoionization , 2012 .

[4]  R. Feifel,et al.  Influence of double Auger decay on low-energy 3d photoelectrons of krypton , 2012 .

[5]  M. Piancastelli,et al.  Ultrafast dynamics in postcollision interaction after multiple auger decays in argon 1s photoionization. , 2012, Physical review letters.

[6]  M. Piancastelli,et al.  Complex decay patterns in atomic core photoionization disentangled by ion-recoil measurements , 2011 .

[7]  L. Gerchikov Post-collision-interaction distortion of low-energy photoelectron spectra associated with double Auger decay , 2011 .

[8]  E. Shigemasa,et al.  Decay pathways after Xe 3d inner shell ionization using a multi-electron coincidence technique , 2011 .

[9]  T. Kaneyasu,et al.  PCI effects in argon 2p double Auger decay probed by multielectron coincidence methods , 2010 .

[10]  B. Rudek,et al.  Photoelectron and Auger-electron angular distributions of fixed-in-space CO2 , 2009 .

[11]  M. Schöffler,et al.  Angular correlation between photoelectrons and auger electrons from K-shell ionization of neon. , 2009, Physical review letters.

[12]  W. B. Li,et al.  Resonant double Auger decay in carbon K-shell excitation of CO , 2008 .

[13]  Mourad Idir,et al.  LUCIA, a microfocus soft XAS beamline , 2006 .

[14]  D. Rolles,et al.  Auger cascades versus direct double Auger: relaxation processes following photoionization of the Kr 3d and Xe 4d, 3d inner shells , 2005 .

[15]  R. Feifel,et al.  Multielectron spectroscopy: the xenon 4d hole double auger decay. , 2005, Physical review letters.

[16]  K. Ueda,et al.  A study of photoelectron recapture due to post-collision interaction in Ne at the 1s photoionization threshold , 2005 .

[17]  D. Rolles,et al.  Energy and angular distributions of electrons emitted by direct double auger decay. , 2004, Physical review letters.

[18]  W. Stolte,et al.  LETTER TO THE EDITOR: Anion formation moderated by post-collision interaction following core-level photoexcitation of CO , 2002 .

[19]  A. Lafosse,et al.  Vector correlations in dissociative photoionization of O2 in the 20–28 eV range. I. Electron-ion kinetic energy correlations , 2001 .

[20]  Joachim Ullrich,et al.  Cold Target Recoil Ion Momentum Spectroscopy: a &momentum microscope' to view atomic collision dynamics , 2000 .

[21]  E. Sokell,et al.  Observation of post-collision interaction (PCI) in HBr using two-dimensional photoelectron spectroscopy , 1999 .

[22]  K. Leung,et al.  Postcollision-interaction effects in HCl following photofragmentation near the chlorine K edge , 1998 .

[23]  S. Sheinerman Post-collision interaction in double Auger processes , 1998 .

[24]  J. Ullrich,et al.  Photo-double-ionization of He: Fully differential and absolute electronic and ionic momentum distributions , 1998 .

[25]  F. Busch,et al.  L 23 − M M Auger spectrum of K -ionized argon: Decomposition by electron-ion and electron-electron coincidence techniques , 1997 .

[26]  B. Esser,et al.  Decay of and OCS after sulphur 1s photoexcitation: II. Dissociation channels and kinematics , 1997 .

[27]  B. Esser,et al.  Decay of and OCS after sulphur 1s photoexcitation: I. Total ionic charge spectra and electronic processes , 1997 .

[28]  Eberhardt,et al.  Photoelectron soft x-ray fluorescence coincidence spectroscopy on free molecules. , 1996, Physical review letters.

[29]  P. V. Demekhin,et al.  Direct Hartree-Fock calculation of the cascade decay production of multiply charged ions following inner-shell ionization of Ne, Ar, Kr and Xe , 1995 .

[30]  F. Koike Many-electron effects in post-collision interaction spectra created by Auger cascade of atoms , 1994 .

[31]  S. Sheinerman Coulomb final state interaction in cascade Auger processes , 1994 .

[32]  E. Shigemasa,et al.  Post-collision interaction effects of photoelectrons induced by Auger cascades , 1994 .

[33]  V. Schmidt Photoionization of atoms using synchrotron radiation , 1992 .

[34]  S. Sheinerman,et al.  Post-collision interaction in atomic processes , 1989 .

[35]  A. Niehaus,et al.  Angular dependent post-collision interaction in auger processes , 1988 .

[36]  R. Perera,et al.  Molecular x‐ray spectra: S‐Kβ emission and K absorption spectra of SCO and CS2 , 1984 .

[37]  M. Krause,et al.  Atomic radiative and radiationless yields for K and L shells , 1979 .