Effect of Dense Material Layers on Unsaturated Water Flow Inside a Large Waste Rock Pile: A Numerical Investigation

The construction method used to build waste rock piles influences their internal structure. Commonly used methods typically lead to the creation of compacted material layers within otherwise loose, coarse-grained waste rock. These dense layers, which typically have a finer grain size, affect the movement and distribution of water inside the pile. Long-term numerical simulations of unsaturated flow in a large pile were conducted to investigate the effect of such layers. The simulations led to various observations that provide a better understanding of the hydrogeological behaviour of the modeled pile (based on an actual case). The results show how water distribution and seepage within the pile are influenced by the presence of these layers. Other factors, including the magnitude of precipitation (or recharge) and pile size, were also investigated. This article presents the main results of the simulations, with some comments on their practical implications for pile design.ZusammenfassungDie während des Aufbaus von Abraumhalden gewählte Schüttungsmethode hat Auswirkungen auf die interne Haldenstruktur. Übliche Schüttungsmethoden führen zur Ausbildung von kompaktierten Lagen innerhalb von locker gelagertem grobkörnigem Abraum. Die dichter gepackten Lagen sind normalerweise feinkörnig aufgebaut und beeinflussen die Sickerwasserbewegung und –verteilung innerhalb der Halde. Durch eine langzeitliche numerische Modellierung des ungesättigten Wassersflusses innerhalb von großen Abraumhalden (mit Bezug zu einem aktuellen Fallbeispiel) werden die Auswirkungen solcher verdichteten Lagen untersucht. Diese Modellierungen führen zu einer Vielzahl von Schlussfolgerungen, mit denen das hydrogeologische Regime innerhalb der untersuchten Halde besser beschrieben werden kann. Die Ergebnisse zeigen, wie die Wasserverteilung und die Sickerwasserbewegung innerhalb der Halde durch die Ausbildung verdichteter Lagen beeinflusst wird Andere Faktoren, wie z. B. die Niederschlagsmenge (und –neubildung) sowie die Haldengröße werden ebenfalls untersucht. In diesem Artikel werden die wesentlichen Ergebnisse der Modellierung aufgezeigt sowie Hinweise zur praktischen Umsetzung beim Haldenaufbau angegeben.ResumenEl método de construcción utilizado para construir las pilas de residuos de roca influye en sus estructuras internas. Los métodos comúnmente usados implican la creación de capas de material compacto dentro de otras capas menos compactas de residuo de roca de grano grueso. Dichas capas densas que usualmente tienen un tamaño de grano más fino, afectan el movimiento y la distribución de agua dentro de la pila. Las simulaciones numéricas de flujo insaturado en una pila de gran tamaño han sido realizadas para investigar el efecto de tales capas. Las simulaciones condujeron a numerosas observaciones que proporcionan una mejor comprensión del comportamiento hidrogeológico de la pila modelada (basado sobre un caso real). Los resultados muestran que la distribución de agua y la filtración dentro de la pila están influidas por la presencia de estas capas. También fueron investigados otros factores, incluyendo la magnitud de precipitación (o recarga) y el tamaño de la pila. Este artículo presenta los principales resultados de las simulaciones con algunos comentarios sobre las implicancias prácticas para el diseño de pilas.抽象废石堆的堆建方式影响着它的内部结构。普通堆积方法常常在松散、粗粒的废石中形成夯实的致密层。致密层以细粒结构为特征,并影响着废石堆内部水分的运移和分布。本文通过大型废石堆中非饱和水流的长时段数值模拟研究了致密层的水文地质作用。该数值模拟使我们能够深入理解废石堆模型(基于实际废石堆建立)水文地质学特征。数值模拟结果展示了致密材料层如何影响废石堆中水分分布和渗流过程。同时,模拟研究了降水量(补给)和废石堆规模的影响。文章根据模拟结果提出了废石堆设计的实用意见。

[1]  David J. Williams,et al.  Rock dump design to limit potential acid drainage , 2008 .

[2]  D. Fredlund,et al.  Soil Mechanics for Unsaturated Soils , 1993 .

[3]  C. Nichol,et al.  Hydrologic and Geochemical Transport Processes in Mine Waste Rock , 2004 .

[4]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[5]  L. Smith,et al.  Field‐scale experiments of unsaturated flow and solute transport in a heterogeneous porous medium , 2005 .

[6]  J. Molson,et al.  Numerical Modelling of Flow and Capillary Barrier Effects in Unsaturated Waste Rock Piles , 2005 .

[7]  M. Chouteau,et al.  Geophysical characterization of the large-scale internal structure of a waste rock pile from a hard rock mine , 2010 .

[8]  J. Molson,et al.  Numerical simulations of pyrite oxidation and acid mine drainage in unsaturated waste rock piles. , 2005, Journal of contaminant hydrology.

[9]  David J. Williams,et al.  Strategies for reducing seepage from surface waste rock piles during operation and post-closure , 2007 .

[10]  J. Molson,et al.  A numerical modelling approach to assess long-term unsaturated flow and geochemical transport in a waste rock pile , 2013 .

[11]  Vinod K. Garga,et al.  Relationships for Non-Darcy Flow in Rockfill , 1998 .

[12]  R. Lefebvre,et al.  An Overview of Prediction and Control of Air Flow in Acid-Generating Waste Rock Dumps , 2004 .

[13]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[14]  G. Destouni,et al.  Comparative analysis of laboratory and field tracer tests for investigating preferential flow and transport in mining waste rock , 1997 .

[15]  M. Chouteau,et al.  A combined hydrogeological – geophysical approach to evaluate unsaturated flow in a large waste rock pile , 2011 .

[16]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[17]  Ning Lu,et al.  Unsaturated Soil Mechanics , 2004 .

[18]  J. Molson,et al.  Analyses of water diversion along inclined covers with capillary barrier effects. , 2009 .

[19]  Harianto Rahardjo,et al.  Unsaturated Soil Mechanics in Engineering Practice: Fredlund/Unsaturated Soil Mechanics , 2012 .

[20]  J. Molson,et al.  An Investigation of Factors that Influence the Water Diversion Capacity of Inclined Covers with Capillary Barrier Effects , 2006 .

[21]  A. Dexter Heterogeneity of unsaturated, gravitational flow of water through beds of large particles , 1993 .

[22]  M. Aubertin,et al.  Influence of internal layers on water flow inside a large waste rock pile , 2012 .

[23]  J. Molson,et al.  Stochastic numerical simulations of long term unsaturated flow in waste rock piles , 2008 .

[24]  J. Molson,et al.  NUMERICAL SIMULATIONS OF LONG TERM UNSATURATED FLOW AND ACID MINE DRAINAGE AT WASTE ROCK PILES , 2006 .

[25]  R. Lefebvre,et al.  Multiphase transfer processes in waste rock piles producing acid mine drainage 2. Applications of numerical simulation. , 2001, Journal of contaminant hydrology.

[26]  J. Andrina Physical and geochemical behavior of mine rock stockpiles in high rainfall environments , 2009 .

[27]  D. Fredlund,et al.  Soil Mechanics for Unsaturated Soils: Fredlund/Soil Mechanics for Unsaturated Soils , 1993 .

[28]  P. Gélinas,et al.  Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Québec, Canada. , 2004, Journal of contaminant hydrology.

[29]  M. Aubertin,et al.  A user's approach to assess numerical codes for saturated and unsaturated seepage conditions , 2001 .

[30]  S. Lawrence Dingman,et al.  Comparison of constitutive flow resistance equations based on the Manning and Chezy equations applied to natural rivers , 2005 .

[31]  J. Molson,et al.  Numerical Modelling of Unsaturated Flow in Uniform and Heterogeneous Waste Rock Piles , 2003 .