Universal role of correlation entropy in critical phenomena
暂无分享,去创建一个
[1] M. Plenio,et al. Quantifying Entanglement , 1997, quant-ph/9702027.
[2] Eytan Barouch,et al. Statistical Mechanics of the X Y Model. II. Spin-Correlation Functions , 1971 .
[3] G. Vidal,et al. Entanglement in quantum critical phenomena. , 2002, Physical review letters.
[4] Shi-Jian Gu,et al. Entanglement, quantum phase transition, and scaling in the XXZ chain , 2003 .
[5] A. Osterloh,et al. Scaling of entanglement close to a quantum phase transition , 2002, Nature.
[6] D. Varshalovich,et al. Quantum Theory of Angular Momentum , 1988 .
[7] P. Jordan. Der Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkörperproblem , 1935 .
[8] S. Gu,et al. Local entanglement and quantum phase transition in 1D transverse field Ising model , 2006, quant-ph/0606133.
[9] S. Sachdev. Quantum Phase Transitions , 1999 .
[10] Shang‐keng Ma. Modern Theory of Critical Phenomena , 1976 .
[11] Claude E. Shannon,et al. The mathematical theory of communication , 1950 .
[12] H. Stanley,et al. Scaling, Universality, and Renormalization: Three Pillars of Modern Critical Phenomena , 1999 .
[13] B. McCoy,et al. The Two-Dimensional Ising Model , 1973 .
[14] Chen Ning Yang,et al. Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid He and of Superconductors , 1962 .
[15] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[16] M. Continentino. Quantum scaling in many-body systems , 2017 .
[17] Hai-Qing Lin,et al. Ground-state entanglement in the XXZ model , 2004, quant-ph/0408101.
[18] M. Nielsen,et al. Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.
[19] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[20] F. Traversa,et al. Two-point versus multipartite entanglement in quantum phase transitions. , 2005, Physical review letters.
[21] Dong Yang,et al. Effects of environmental parameters to total, quantum and classical correlations , 2006, quant-ph/0612223.
[22] Chanchal K. Majumdar,et al. On Next‐Nearest‐Neighbor Interaction in Linear Chain. II , 1969 .
[23] V. Korepin,et al. Universality of entropy scaling in one dimensional gapless models. , 2003, Physical Review Letters.
[24] Shi-Jian Gu,et al. Entanglement and quantum phase transition in the extended Hubbard model. , 2004, Physical review letters.
[25] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[26] V. Vedral. The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.
[27] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[28] N. Mermin,et al. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .
[29] O. Klein. Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre , 1931 .
[30] D. Sherrington,et al. TWO KINDS OF BOSONS AND BOSE CONDENSATES. , 1970 .
[31] R. Shankar. Renormalization group approach to interacting fermions , 1994 .
[32] A. Wehrl. General properties of entropy , 1978 .
[33] L. Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .
[34] Eytan Barouch,et al. Statistical Mechanics of the XY Model. III , 1970 .
[35] K. Binder,et al. A Guide to Monte Carlo Simulations in Statistical Physics , 2000 .