A Trinomial Analogue of Bailey's Lemma and N = 2 Superconformal Invariance
暂无分享,去创建一个
[1] S. Warnaar,et al. The Andrews–Gordon Identities and q-Multinomial Coefficients , 1996, q-alg/9601012.
[2] B. McCoy,et al. Bailey flows and Bose-Fermi identities for the conformal coset models. . , 1997, hep-th/9702026.
[3] Alexander Berkovich,et al. Generalizations of the Andrews-Bressoud identities for the N = 1 superconformal model SM(2, 4ν) , 1995 .
[4] Supersymmetric Analogs of the Gordon-Andrews Identities, and Related TBA Systems , 1994, hep-th/9412154.
[5] Unitarity of rationalN = 2 superconformal theories , 1996, hep-th/9601163.
[6] Central charge and the Andrews–Bailey construction , 1996, hep-th/9607168.
[7] B. McCoy,et al. Bailey flows and Bose Fermi identities for the conformed coset models (A_1^(1))_N x (A_1^(1))_N' / (A_1^(1))_N+N' , 1997 .
[8] Emil Grosswald,et al. The Theory of Partitions , 1984 .
[9] A. Schilling,et al. A Higher Level Bailey Lemma: Proof and Application , 1996, q-alg/9607014.
[10] S. Ole Warnaar. A Note on the Trinomial Analogue of Bailey's Lemma , 1998, J. Comb. Theory, Ser. A.
[11] Anne Schilling,et al. Supernomial Coefficients, Polynomial Identities and q-Series , 1997 .
[12] Anne Schilling,et al. Rogers–Schur–Ramanujan Type Identities for the M(p,p′) Minimal Models of Conformal Field Theory , 1998 .
[13] George E. Andrews,et al. q-series : their development and application in analysis, number theory, combinatorics, physics, and computer algebra , 1986 .