Demonstration of Einstein-Podolsky-Rosen Steering Using Single-Photon Path Entanglement and Displacement-Based Detection.

We demonstrate the violation of an Einstein-Podolsky-Rosen steering inequality developed for single-photon path entanglement with displacement-based detection. We use a high-rate source of heralded single-photon path-entangled states, combined with high-efficiency superconducting-based detectors, in a scheme that is free of any postselection and thus immune to the detection loophole. This result conclusively demonstrates single-photon entanglement in a one-sided device-independent scenario, and opens the way towards implementations of device-independent quantum technologies within the paradigm of path entanglement.

[1]  Rafael Chaves,et al.  Robust nonlocality tests with displacement-based measurements , 2012 .

[2]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[3]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[4]  Generation of tunable wavelength coherent states and heralded single photons for quantum optics applications , 2013, 1309.6172.

[5]  Rupert Ursin,et al.  Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.

[6]  H. Zbinden,et al.  High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films. , 2015, Optics express.

[7]  R. Thew,et al.  Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths. , 2014, Optics express.

[8]  Matteo G. A. Paris,et al.  Displacement operator by beam splitter , 1996 .

[9]  H Zbinden,et al.  Revealing genuine optical-path entanglement. , 2015, Physical review letters.

[10]  Konrad Banaszek,et al.  TESTING QUANTUM NONLOCALITY IN PHASE SPACE , 1999 .

[11]  Walmsley,et al.  Violation of Bell's inequality by a generalized einstein-podolsky-rosen state using homodyne detection , 2000, Physical review letters.

[12]  N. Gisin,et al.  Comparing different approaches for generating random numbers device-independently using a photon pair source , 2014, 1409.8051.

[13]  Matthew F. Pusey,et al.  Negativity and steering: A stronger Peres conjecture , 2013, 1305.1767.

[14]  N. Gisin,et al.  Heralded photon amplification for quantum communication , 2012, 1203.3396.

[15]  Zach DeVito,et al.  Opt , 2017 .

[16]  N Gisin,et al.  Purification of single-photon entanglement. , 2010, Physical review letters.

[17]  Collett,et al.  Nonlocality of a single photon. , 1991, Physical review letters.

[18]  Félix Bussières,et al.  Heralded amplification of photonic qubits. , 2015, Optics express.

[19]  T. Ralph,et al.  Nondeterministic Noiseless Linear Amplification of Quantum Systems , 2009 .

[20]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[21]  Miguel Navascués,et al.  Quantifying Einstein-Podolsky-Rosen steering. , 2013, Physical review letters.

[22]  Shuntaro Takeda,et al.  Experimental proof of nonlocal wavefunction collapse for a single particle using homodyne measurements , 2014, Nature Communications.

[23]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[24]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[25]  S. J. van Enk,et al.  Characterization of Multipartite Entanglement for One Photon Shared Among Four Optical Modes , 2009, Science.

[26]  S. J. van Enk,et al.  Single-particle entanglement , 2005 .

[27]  F. Sciarrino,et al.  Delayed-choice entanglement swapping with vacuum–one-photon quantum states , 2002, quant-ph/0201019.

[28]  H. M. Wiseman,et al.  Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox , 2009, 0907.1109.

[29]  D. J. Saunders,et al.  Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole , 2011 .

[30]  Rafael Chaves,et al.  Testing nonlocality of a single photon without a shared reference frame , 2012, 1212.2019.

[31]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[32]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[33]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[34]  Fabio Sciarrino,et al.  Teleportation of a vacuum--one-photon qubit. , 2002, Physical review letters.

[35]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[36]  Stefan Nolte,et al.  On-chip generation of high-order single-photon W-states , 2014, Nature Photonics.

[37]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[38]  Geoff J. Pryde,et al.  Heralded noiseless amplification of a photon polarization qubit , 2012, Nature Physics.

[39]  A. Furusawa,et al.  Noiseless Conditional Teleportation of a Single Photon. , 2014, Physical review letters.

[40]  H. Weinfurter,et al.  Heralded Entanglement Between Widely Separated Atoms , 2012, Science.

[41]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[42]  Hoshang Heydari,et al.  Experimental demonstration of single photon nonlocality. , 2004, Physical review letters.

[43]  Single-particle nonlocality and entanglement with the vacuum , 2001, quant-ph/0103074.