Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti‐Stabilized MnO2

Catalysts are required for the oxygen evolution reaction, which are abundant, active, and stable in acid. MnO2 is a promising candidate material for this purpose. However, it dissolves at high overpotentials. Using first‐principles calculations, a strategy to mitigate this problem by decorating undercoordinated surface sites of MnO2 with a stable oxide is developed here. TiO2 stands out as the most promising of the different oxides in the simulations. This prediction is experimentally verified by testing sputter‐deposited thin films of MnO2 and Ti–MnO2. A combination of electrochemical measurements, quartz crystal microbalance, inductively coupled plasma mass spectrometry measurements, and X‐ray photoelectron spectroscopy is performed. Small amounts of TiO2 incorporated into MnO2 lead to a moderate improvement in stability, with only a small decrease in activity. This study opens up the possibility of engineering surface properties of catalysts so that active and abundant nonprecious metal oxides can be used in acid electrolytes.

[1]  Yang Shao-Horn,et al.  Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis , 2015 .

[2]  W. Schuhmann,et al.  Experimental Aspects in Benchmarking of the Electrocatalytic Activity , 2015 .

[3]  J. Rossmeisl,et al.  Enhancing Activity for the Oxygen Evolution Reaction: The Beneficial Interaction of Gold with Manganese and Cobalt Oxides , 2015 .

[4]  N. Danilovic,et al.  Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. , 2014, Angewandte Chemie.

[5]  I. Chorkendorff,et al.  Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses , 2014 .

[6]  Shannon A. Bonke,et al.  Electronic structural insights into efficient MnOx catalysts , 2014 .

[7]  Thomas F. Jaramillo,et al.  Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials , 2014 .

[8]  Emiliana Fabbri,et al.  Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction , 2014 .

[9]  I. Chorkendorff,et al.  Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles , 2014, Chemical science.

[10]  N. Lewis,et al.  Stabilization of n-cadmium telluride photoanodes for water oxidation to O2(g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition , 2014 .

[11]  Plamen Atanassov,et al.  Anion-exchange membranes in electrochemical energy systems , 2014 .

[12]  Aleksandar R. Zeradjanin,et al.  Dissolution of Noble Metals during Oxygen Evolution in Acidic Media , 2014 .

[13]  Anna M. Wise,et al.  Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. , 2014, Nature chemistry.

[14]  Ib Chorkendorff,et al.  2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs , 2014 .

[15]  N. Danilovic,et al.  Activity-Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments. , 2014, The journal of physical chemistry letters.

[16]  Lin Gan,et al.  IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting , 2014 .

[17]  H. Gasteiger,et al.  New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism , 2014 .

[18]  Jan Rossmeisl,et al.  Beyond the volcano limitations in electrocatalysis--oxygen evolution reaction. , 2014, Physical chemistry chemical physics : PCCP.

[19]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[20]  S. Boettcher,et al.  Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. , 2014, Journal of the American Chemical Society.

[21]  D. Nocera,et al.  A functionally stable manganese oxide oxygen evolution catalyst in acid. , 2014, Journal of the American Chemical Society.

[22]  D. Sokaras,et al.  Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation , 2014, Journal of the American Chemical Society.

[23]  James R. McKone,et al.  Will Solar-Driven Water-Splitting Devices See the Light of Day? , 2014 .

[24]  Aleksandar R. Zeradjanin,et al.  Oxygen electrochemistry as a cornerstone for sustainable energy conversion. , 2014, Angewandte Chemie.

[25]  Ib Chorkendorff,et al.  Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2 evolution , 2013 .

[26]  O. Hansen,et al.  Silicon protected with atomic layer deposited TiO2: conducting versus tunnelling through TiO2 , 2013 .

[27]  Charles C. L. McCrory,et al.  Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. , 2013, Journal of the American Chemical Society.

[28]  Yang Shao-Horn,et al.  Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution , 2013, Nature Communications.

[29]  Aleksandar R. Zeradjanin,et al.  Gold dissolution: towards understanding of noble metal corrosion , 2013 .

[30]  Lin Gan,et al.  Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. , 2013, Nature materials.

[31]  T. Jaramillo,et al.  In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. , 2013, Journal of the American Chemical Society.

[32]  Tom Regier,et al.  An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. , 2013, Journal of the American Chemical Society.

[33]  Zhipan Zhang,et al.  Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis , 2013, Science.

[34]  J. Rosen,et al.  Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. , 2013, Journal of the American Chemical Society.

[35]  Kevin C. Leonard,et al.  Nano-size layered manganese-calcium oxide as an efficient and biomimetic catalyst for water oxidation under acidic conditions: comparable to platinum. , 2013, Dalton transactions.

[36]  N. Lewis,et al.  Photoelectrochemical Behavior of n‑type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition , 2013 .

[37]  David M. Robinson,et al.  Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. , 2013, Journal of the American Chemical Society.

[38]  Ib Chorkendorff,et al.  Using TiO2 as a conductive protective layer for photocathodic H2 evolution. , 2013, Journal of the American Chemical Society.

[39]  Nenad M. Markovic,et al.  The road from animal electricity to green energy: combining experiment and theory in electrocatalysis , 2012 .

[40]  S. Boettcher,et al.  Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. , 2012, Journal of the American Chemical Society.

[41]  S. Bent,et al.  Active MnOx Electrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions , 2012 .

[42]  J. Nørskov,et al.  Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. , 2012, Physical chemistry chemical physics : PCCP.

[43]  M. Bagherzadeh,et al.  A very simple method to synthesize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins. , 2012, Dalton transactions.

[44]  Thomas F. Jaramillo,et al.  Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy , 2012 .

[45]  H. Dau,et al.  Layered manganese oxides for water-oxidation: alkaline earth cations influence catalytic activity in a photosystem II-like fashion , 2012 .

[46]  Kazuhito Hashimoto,et al.  Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. , 2012, Journal of the American Chemical Society.

[47]  Everett B. Anderson,et al.  Initial Performance and Durability of Ultra-Low Loaded NSTF Electrodes for PEM Electrolyzers , 2011 .

[48]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[49]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[50]  Yu Morimoto,et al.  First Principles Calculations on Site-Dependent Dissolution Potentials of Supported and Unsupported Pt Particles , 2010 .

[51]  T. Jaramillo,et al.  A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. , 2010, Journal of the American Chemical Society.

[52]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[53]  J. Greeley Structural effects on trends in the deposition and dissolution of metal-supported metal adstructures , 2010 .

[54]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  Philipp Kurz,et al.  Calcium manganese(III) oxides (CaMn2O4.xH2O) as biomimetic oxygen-evolving catalysts. , 2010, Angewandte Chemie.

[56]  D. J. Mowbray,et al.  Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces , 2010, 1002.4834.

[57]  H. Gasteiger,et al.  Just a Dream—or Future Reality? , 2009, Science.

[58]  F. Jiao,et al.  Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. , 2009, Angewandte Chemie.

[59]  P. Strasser,et al.  Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis. , 2008, Physical chemistry chemical physics : PCCP.

[60]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[61]  Mohamed I. Awad,et al.  Enhanced water electrolysis : Electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes , 2007 .

[62]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[63]  Jens K. Nørskov,et al.  Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations , 2007 .

[64]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[65]  N. Marković,et al.  Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. , 2006, Journal of the American Chemical Society.

[66]  J. Nørskov,et al.  Electrolysis of water on (oxidized) metal surfaces , 2005 .

[67]  C. Thelander,et al.  Spin relaxation in InAs nanowires studied by tunable weak antilocalization , 2005 .

[68]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[69]  A. Wiȩckowski,et al.  In situ STM imaging of spontaneously deposited ruthenium on Au(111) , 2002 .

[70]  Hiroyuki Uchida,et al.  In situ STM imaging of surface dissolution and rearrangement of a Pt-Fe alloy electrocatalyst in electrolyte solution. , 2002, Chemical communications.

[71]  V. Climent,et al.  On the different adsorption behavior of bismuth, sulfur, selenium and tellurium on a Pt(775) stepped surface , 2000 .

[72]  Hans-Joachim Freund,et al.  Palladium Nanocrystals on Al 2 O 3 : Structure and Adhesion Energy , 1999 .

[73]  J. Nørskov,et al.  Role of Steps in N 2 Activation on Ru(0001) , 1999 .

[74]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[75]  Clausen,et al.  Design of a surface alloy catalyst for steam reforming , 1998, Science.

[76]  G. Ertl,et al.  Identification of the "Active Sites" of a Surface-Catalyzed Reaction , 1996, Science.

[77]  I. Stensgaard,et al.  Scanning tunneling microscopy study of S adsorption on Ni(111) , 1994 .

[78]  R. Behm,et al.  A comparative STM study of the growth of thin Au films on clean and oxygen-precovered Ru(0001) surfaces , 1992 .

[79]  H. Beer The Invention and Industrial Development of Metal Anodes , 1980 .

[80]  H. Yeager,et al.  Sodium Ion Diffusion in Nafion® Ion Exchange Membranes , 1980 .

[81]  M. Morita,et al.  The anodic characteristics of massive manganese oxide electrode , 1979 .

[82]  S. Trasatti,et al.  Ruthenium dioxide-based film electrodes , 1978 .

[83]  M. Morita,et al.  The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate , 1977 .

[84]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[85]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[86]  G. Polzonetti,et al.  XPS study of MnO oxidation , 1989 .

[87]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .