The behavior of essential dimension under specialization II

Let G be a linear algebraic group over a field. We show that, under mild assumptions, in a family of primitive generically free G-varieties over a base variety B the essential dimension of the geometric fibers may drop on a countable union of Zariski closed subsets of B and stays constant away from this countable union. We give several applications of this result.

[1]  J. Serre,et al.  Sure la topologie des variétés algébriques en caractéristique p , 2003 .

[2]  Jesse Wolfson,et al.  Essential dimension via prismatic cohomology , 2021, 2110.05534.

[3]  G. Ballew,et al.  The Arithmetic of Elliptic Curves , 2020, Elliptic Curves.

[4]  Sivaramakrishna Anantharaman Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1 , 1973 .

[5]  Skip Garibaldi,et al.  Cohomological Invariants in Galois Cohomology , 2003 .

[6]  李幼升,et al.  Ph , 1989 .

[7]  Zinovy Reichstein,et al.  The behavior of essential dimension under specialization , 2021 .

[8]  David Schwein,et al.  Étale Cohomology , 2018, Translations of Mathematical Monographs.

[9]  Alexander Merkurjev,et al.  ESSENTIAL DIMENSION , 2015 .

[10]  Craig Huneke,et al.  Commutative Algebra I , 2012 .

[11]  Tsit Yuen Lam,et al.  Introduction To Quadratic Forms Over Fields , 2004 .

[12]  R. Thomason,et al.  Higher Algebraic K-Theory of Schemes and of Derived Categories , 1990 .

[13]  Rijul Saini,et al.  Finite groups scheme actions and incompressibility of Galois covers: beyond the ordinary case , 2021, Documenta Mathematica.

[14]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[15]  Resolving G-torsors by abelian base extensions , 2004, math/0404392.

[16]  Jesse Wolfson,et al.  The essential dimension of congruence covers , 2019, Compositio Mathematica.

[17]  R. Schulze-Pillot,et al.  Quadratic Forms—Algebra, Arithmetic, and Geometry , 2009 .

[18]  Valeri V.Dolotin On Invariant Theory , 1995, alg-geom/9512011.

[19]  Z. Reichstein On the notion of essential dimension for algebraic groups , 2000 .

[20]  Z. Reichstein,et al.  Essential dimension and algebraic stacks , 2007, math/0701903.

[21]  Alexander Merkurjev,et al.  Essential dimension: a survey , 2013 .

[22]  Z. Reichstein,et al.  Reduction of structure for torsors over semilocal rings , 2007, 0710.2064.

[23]  Jean-Pierre Serre Faisceaux algébriques cohérents , 1955 .

[24]  Z. Reichstein,et al.  Essential Dimension in Mixed Characteristic , 2018, Documenta Mathematica.

[25]  W. Marsden I and J , 2012 .