Interaction of wavy cylindrical Couette flow with endwalls
暂无分享,去创建一个
Richard M. Lueptow | Olivier Czarny | Patrick Bontoux | Eric Serre | E. Serre | O. Czarny | P. Bontoux
[1] Patrick Bontoux,et al. Annular and spiral patterns in flows between rotating and stationary discs , 2001, Journal of Fluid Mechanics.
[2] Nicholas P. Cheremisinoff. Encyclopedia of fluid mechanics , 2016 .
[3] R. DiPrima,et al. The Effect of Radius Ratio on the Stability of Couette Flow and Taylor Vortex Flow , 1984 .
[4] K. W. Morton,et al. Numerical methods for fluid dynamics , 1987 .
[5] D. Coles. Transition in circular Couette flow , 1965, Journal of Fluid Mechanics.
[6] K. Ball,et al. Taylor–Couette flow with buoyancy: Onset of spiral flow , 1997 .
[7] Patrick Bontoux,et al. A spectral projection method for the simulation of complex three-dimensional rotating flows , 2002 .
[8] Richard M. Lueptow,et al. Ekman vortices and the centrifugal instability in counter-rotating cylindrical Couette flow , 2004 .
[9] Interaction between Ekman pumping and the centrifugal instability in Taylor–Couette flow , 2003 .
[10] R. Donnelly,et al. Determination of Transition in Couette Flow in Finite Geometries , 1981 .
[11] R. Donnelly. Taylor‐Couette Flow: The Early Days , 1991 .
[12] T. Benjamin,et al. Bifurcation phenomena in steady flows of a viscous fluid II. Experiments , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[13] Richard M. Lueptow,et al. Identification of complex flows in Taylor-Couette counter-rotating cavities. , 2001, Comptes rendus de l'Academie des sciences. Serie II, Mecanique, physique, chimie, sciences de l'univers, sciences de la terre.
[14] M. Ross,et al. Effects of cylinder length on transition to doubly periodic Taylor–Couette flow , 1987 .
[15] Harvey P. Greenspan,et al. The Theory of Rotating Fluids. By H. P. GREENSPAN. Cambridge University Press, 1968. 327 pp. £5.50. , 1972, Journal of Fluid Mechanics.
[16] G. Pfister,et al. End effects on the transition to time‐dependent motion in the Taylor experiment , 1983 .
[17] Y. Chew,et al. Second Taylor vortex flow: Effects of radius ratio and aspect ratio , 2002 .
[18] Richard M. Lueptow,et al. Spatio-temporal character of non-wavy and wavy Taylor–Couette flow , 1998, Journal of Fluid Mechanics.
[19] J. A. Cole. Taylor vortex instability and annulus length effects , 1974, Nature.
[20] G. Ahlers,et al. Vortex-Front Propagation in Rotating Couette-Taylor Flow , 1983 .
[21] T. Benjamin. Bifurcation phenomena in steady flows of a viscous fluid. I. Theory , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[22] Müller,et al. Taylor vortex formation in axial through-flow: Linear and weakly nonlinear analysis. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[23] T. Mullin,et al. Anomalous modes in the Taylor experiment , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[24] G. Pfister,et al. Space-dependent order parameter in circular couette flow transitions , 1981 .
[25] Y. Chew,et al. A new flow regime in a Taylor–Couette flow , 1998 .
[26] E. Koschmieder,et al. Steady supercritical Taylor vortices after sudden starts , 1974 .
[27] G. Grillaud,et al. Computation of taylor vortex flow by a transient implicit method , 1978 .
[28] Richard M. Lueptow,et al. Spiral and Wavy Vortex Flows in Short Counter-Rotating Taylor–Couette Cells , 2002 .