Interaction of wavy cylindrical Couette flow with endwalls

The finite length of a Taylor–Couette cell introduces endwall effects that interact with the centrifugal instability and the subsequent wavy vortex flow. We investigate the interaction between the endwall Ekman boundary layers and the wavy vortices in a finite-length cavity via direct numerical simulation using a three-dimensional spectral method. To analyze the nature of the interaction between the vortices and the endwall layers, we consider three endwall boundary conditions: fixed endwalls, endwalls rotating with the inner cylinder, and stress-free endwalls. Near the endwalls, the waviness is diminished, primarily due to the effect of the flatness of the endwall rather than as a result of the no-slip boundary condition at the endwall. However, the waviness is present just one or two vortices away from the endwalls, indicating that the effect of the endwall on waviness does not penetrate far from the endwall. The interaction of the waviness with the endwall Ekman layer does not appear to result in disor...

[1]  Patrick Bontoux,et al.  Annular and spiral patterns in flows between rotating and stationary discs , 2001, Journal of Fluid Mechanics.

[2]  Nicholas P. Cheremisinoff Encyclopedia of fluid mechanics , 2016 .

[3]  R. DiPrima,et al.  The Effect of Radius Ratio on the Stability of Couette Flow and Taylor Vortex Flow , 1984 .

[4]  K. W. Morton,et al.  Numerical methods for fluid dynamics , 1987 .

[5]  D. Coles Transition in circular Couette flow , 1965, Journal of Fluid Mechanics.

[6]  K. Ball,et al.  Taylor–Couette flow with buoyancy: Onset of spiral flow , 1997 .

[7]  Patrick Bontoux,et al.  A spectral projection method for the simulation of complex three-dimensional rotating flows , 2002 .

[8]  Richard M. Lueptow,et al.  Ekman vortices and the centrifugal instability in counter-rotating cylindrical Couette flow , 2004 .

[9]  Interaction between Ekman pumping and the centrifugal instability in Taylor–Couette flow , 2003 .

[10]  R. Donnelly,et al.  Determination of Transition in Couette Flow in Finite Geometries , 1981 .

[11]  R. Donnelly Taylor‐Couette Flow: The Early Days , 1991 .

[12]  T. Benjamin,et al.  Bifurcation phenomena in steady flows of a viscous fluid II. Experiments , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Richard M. Lueptow,et al.  Identification of complex flows in Taylor-Couette counter-rotating cavities. , 2001, Comptes rendus de l'Academie des sciences. Serie II, Mecanique, physique, chimie, sciences de l'univers, sciences de la terre.

[14]  M. Ross,et al.  Effects of cylinder length on transition to doubly periodic Taylor–Couette flow , 1987 .

[15]  Harvey P. Greenspan,et al.  The Theory of Rotating Fluids. By H. P. GREENSPAN. Cambridge University Press, 1968. 327 pp. £5.50. , 1972, Journal of Fluid Mechanics.

[16]  G. Pfister,et al.  End effects on the transition to time‐dependent motion in the Taylor experiment , 1983 .

[17]  Y. Chew,et al.  Second Taylor vortex flow: Effects of radius ratio and aspect ratio , 2002 .

[18]  Richard M. Lueptow,et al.  Spatio-temporal character of non-wavy and wavy Taylor–Couette flow , 1998, Journal of Fluid Mechanics.

[19]  J. A. Cole Taylor vortex instability and annulus length effects , 1974, Nature.

[20]  G. Ahlers,et al.  Vortex-Front Propagation in Rotating Couette-Taylor Flow , 1983 .

[21]  T. Benjamin Bifurcation phenomena in steady flows of a viscous fluid. I. Theory , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  Müller,et al.  Taylor vortex formation in axial through-flow: Linear and weakly nonlinear analysis. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  T. Mullin,et al.  Anomalous modes in the Taylor experiment , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  G. Pfister,et al.  Space-dependent order parameter in circular couette flow transitions , 1981 .

[25]  Y. Chew,et al.  A new flow regime in a Taylor–Couette flow , 1998 .

[26]  E. Koschmieder,et al.  Steady supercritical Taylor vortices after sudden starts , 1974 .

[27]  G. Grillaud,et al.  Computation of taylor vortex flow by a transient implicit method , 1978 .

[28]  Richard M. Lueptow,et al.  Spiral and Wavy Vortex Flows in Short Counter-Rotating Taylor–Couette Cells , 2002 .