Some extensions of the karnik-mendel algorithms for computing an interval type-2 fuzzy set centroid

Computing the centroid of an interval type-2 fuzzy set is an important operation in a type-2 fuzzy logic system, and is usually implemented by Karnik-Mendel (KM) iterative algorithms. This paper proves that the centroid computation of an interval type-2 fuzzy set (IT2 FS) using KM algorithms is equivalent to the Newton-Raphson root-finding method in numerical analysis, and explains how continuous enhanced KM (CEKM) algorithms can be used to compute that centroid. Weighted enhanced KM (WEKM) algorithms are proposed to connect EKM algorithms and CEKM algorithms together using numerical integration techniques. Three new kinds of centroid computation methods are summarized as root finding, CEKM algorithms and WEKM algorithms. Numerical examples illustrate the applications of these new centroid computation methods, and demonstrate the superity of the WEKM algorithms.

[1]  Hani Hagras,et al.  Toward General Type-2 Fuzzy Logic Systems Based on zSlices , 2010, IEEE Transactions on Fuzzy Systems.

[2]  Jerry M. Mendel,et al.  New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule , 2007, Inf. Sci..

[3]  George Lindfield,et al.  Numerical Methods Using MATLAB , 1998 .

[4]  Jerry M. Mendel,et al.  Perceptual Reasoning for Perceptual Computing: A Similarity-Based Approach , 2009, IEEE Transactions on Fuzzy Systems.

[5]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[6]  Jerry M. Mendel,et al.  Computing with words and its relationships with fuzzistics , 2007, Inf. Sci..

[7]  Chinho Lin,et al.  A new fuzzy TOPSIS for fuzzy MADM problems under group decisions , 2007, J. Intell. Fuzzy Syst..

[8]  Kuo-Ping Lin,et al.  A Comparison of Discrete Algorithms for Fuzzy Weighted Average , 2006, IEEE Transactions on Fuzzy Systems.

[9]  Jerry M. Mendel,et al.  A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets , 2009, Inf. Sci..

[10]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[11]  Jerry M. Mendel,et al.  Perceptual Computing: Aiding People in Making Subjective Judgments , 2010 .

[12]  Jerry M. Mendel,et al.  Connect Karnik-Mendel Algorithms to Root-Finding for Computing the Centroid of an Interval Type-2 Fuzzy Set , 2011, IEEE Transactions on Fuzzy Systems.

[13]  Jerry M. Mendel,et al.  Computing derivatives in interval type-2 fuzzy logic systems , 2004, IEEE Transactions on Fuzzy Systems.

[14]  Sy-Ming Guu Fuzzy weighted averages revisited , 2002, Fuzzy Sets Syst..

[15]  Jerry M. Mendel,et al.  Study on enhanced Karnik-Mendel algorithms: Initialization explanations and computation improvements , 2012, Inf. Sci..

[16]  Jerry M. Mendel,et al.  Aggregation Using the Fuzzy Weighted Average as Computed by the Karnik–Mendel Algorithms , 2008, IEEE Transactions on Fuzzy Systems.

[17]  Jerry M. Mendel,et al.  Type-2 Fuzzistics for Symmetric Interval Type-2 Fuzzy Sets: Part 1, Forward Problems , 2006, IEEE Transactions on Fuzzy Systems.

[18]  Dong Hoon Lee,et al.  An efficient algorithm for fuzzy weighted average , 1997, Fuzzy Sets Syst..

[19]  Jerry M. Mendel,et al.  $\alpha$-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications , 2009, IEEE Transactions on Fuzzy Systems.

[20]  R. John,et al.  Type-2 Fuzzy Logic: A Historical View , 2007, IEEE Computational Intelligence Magazine.

[21]  Chi-Hsu Wang,et al.  Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN) , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[22]  E. Lee,et al.  Fuzzy weighted average: A max-min paired elimination method , 1996 .

[23]  Dongrui Wu,et al.  Enhanced Karnik-Mendel Algorithms for Interval Type-2 Fuzzy Sets and Systems , 2007, NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society.

[24]  Jerry M. Mendel,et al.  Uncertainty measures for interval type-2 fuzzy sets , 2007, Inf. Sci..

[25]  Jerry M. Mendel,et al.  On answering the question "Where do I start in order to solve a new problem involving interval type-2 fuzzy sets?" , 2009, Inf. Sci..

[26]  Jerry M. Mendel,et al.  Super-Exponential Convergence of the Karnik–Mendel Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set , 2007, IEEE Transactions on Fuzzy Systems.

[27]  J. Mendel,et al.  α-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications , 2009 .

[28]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[29]  Feilong Liu,et al.  An efficient centroid type-reduction strategy for general type-2 fuzzy logic system , 2008, Inf. Sci..