Smart composites of piezoelectric particles and shape memory polymers for actuation and nanopositioning

[1]  Hao Tang,et al.  The positive temperature coefficient phenomenon of vinyl polymer/CB composites , 1993 .

[2]  C. Liang,et al.  Electromechanical Analysis of Piezoelectric Stack Active Member Power Consumption , 1995 .

[3]  R. Mülhaupt,et al.  Mechanical and thermal properties of syndiotactic polypropene filled with glass beads and talcum , 1997 .

[4]  Nesbitt W. Hagood,et al.  Durability Characterization of Active Fiber Composite Actuators for Helicopter Rotor Blade Applications , 2003 .

[5]  B. Satish,et al.  Piezoelectric properties of ferroelectric PZT-polymer composites , 2001 .

[6]  M. Lake,et al.  Shape memory polymer nanocomposites , 2002 .

[7]  A. Lendlein,et al.  Shape-memory polymers , 2002 .

[8]  D. Das-gupta,et al.  Characterization and application of PZT/PU and graphite doped PZT/PU composite , 2002 .

[9]  Daniel J. Inman,et al.  An investigation into the performance of macro-fiber composites for sensing and structural vibration applications , 2004 .

[10]  R. Vaia,et al.  Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers , 2004, Nature materials.

[11]  Y. Poon,et al.  Dielectric and pyroelectric properties of lead zirconate titanate/polyurethane composites , 2004 .

[12]  Viresh Wickramasinghe,et al.  Material characterization of active fiber composites for integral twist-actuated rotor blade application , 2004 .

[13]  Iztok Švab,et al.  The Adhesion Phenomena in Polypropylene/Wollastonite Composites † , 2005 .

[14]  N. Goo,et al.  Electroactive Shape‐Memory Polyurethane Composites Incorporating Carbon Nanotubes , 2005 .

[15]  Robert J. Veillette,et al.  A charge controller for linear operation of a piezoelectric stack actuator , 2005, IEEE Transactions on Control Systems Technology.

[16]  W. Ni,et al.  Digital closed-loop nanopositioning using rectilinear flexure stage and laser interferometry , 2005 .

[17]  Z. Dang,et al.  Carbon nanotube composites with high dielectric constant at low percolation threshold , 2005 .

[18]  Sang-Gook Kim,et al.  MEMS power generator with transverse mode thin film PZT , 2005 .

[19]  Lijie Dong,et al.  Piezoelectric and dielectric properties of PZT/PVC and graphite doped with PZT/PVC composites , 2006 .

[20]  S. Jana,et al.  Nanoclay-tethered shape memory polyurethane nanocomposites , 2007 .

[21]  A. Lendlein,et al.  Shape-memory polymers. , 2002, Angewandte Chemie.

[22]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[23]  M. Breese,et al.  Proton beam writing , 2007 .

[24]  F. Boey,et al.  Shape memory in un-cross-linked biodegradable polymers , 2008, Journal of biomaterials science. Polymer edition.

[25]  I. Rousseau Challenges of Shape Memory Polymers : A Review of the Progress Toward Overcoming SMP's Limitations , 2008 .

[26]  D. Ratna,et al.  Recent advances in shape memory polymers and composites: a review , 2008 .

[27]  P. Mather,et al.  Shape Memory Polymer Research , 2009 .

[28]  P. Mather,et al.  Conductive shape memory nanocomposites for high speed electrical actuation , 2010 .

[29]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[30]  T. Xie Recent advances in polymer shape memory , 2011 .

[31]  S. Priya,et al.  Piezoelectric MEMS for energy harvesting , 2012 .

[32]  T. Hausotte,et al.  Recent developments and challenges of nanopositioning and nanomeasuring technology , 2012 .

[33]  J. Ou,et al.  PZT/PVDF composites doped with carbon nanotubes , 2013 .

[34]  T. D. Dao,et al.  The modification of graphene with alcohols and its use in shape memory polyurethane composites , 2013 .

[35]  S. Ryu,et al.  Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites , 2013 .

[36]  S. Zwaag,et al.  Piezoelectric and mechanical properties of structured PZT–epoxy composites , 2013 .

[37]  I. Babu Enhanced electromechanical properties of piezoelectric thin flexible films , 2014 .

[38]  Yanju Liu,et al.  Shape memory polymers and their composites in aerospace applications: a review , 2014 .

[39]  I. Babu Highly flexible piezoelectric 0–3 PZT–PDMS composites with high filler content , 2014 .

[40]  S. Azari,et al.  Superior piezoelectric composite films: taking advantage of carbon nanomaterials , 2013, Nanotechnology.

[41]  H. Duan,et al.  Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels , 2015 .

[42]  N. Saber,et al.  Smart thin-film piezoelectric composite sensors based on high lead zirconate titanate content , 2015 .

[43]  Yanju Liu,et al.  Remote, fast actuation of programmable multiple shape memory composites by magnetic fields , 2015 .

[44]  Wan-Soo Kim,et al.  Precise contour motion of XY stage driven by ultrasonic linear motors in a high vacuum environment , 2016 .

[45]  Xiaodong He,et al.  Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application. , 2016, Nanoscale.

[46]  Z. Jiang,et al.  Mechanical and electro-mechanical properties of three-dimensional nanoporous graphene-poly(vinylidene fluoride) composites , 2016 .

[47]  Chunhua Lu,et al.  Precise stimulation of near-infrared light responsive shape-memory polymer composites using upconversion particles with photothermal capability , 2017 .

[48]  Yanjun Li,et al.  Influence of sepiolite on crystallinity of soft segments and shape memory properties of polyurethane nanocomposites , 2018 .