TRAKO: Efficient Transmission of Tractography Data for Visualization

Fiber tracking produces large tractography datasets that are tens of gigabytes in size consisting of millions of streamlines. Such vast amounts of data require formats that allow for efficient storage, transfer, and visualization. We present TRAKO, a new data format based on the Graphics Layer Transmission Format (glTF) that enables immediate graphical and hardware-accelerated processing. We integrate a state-of-the-art compression technique for vertices, streamlines, and attached scalar and property data. We then compare TRAKO to existing tractography storage methods and provide a detailed evaluation on eight datasets. TRAKO can achieve data reductions of over 28x without loss of statistical significance when used to replicate analysis from previously published studies.

[1]  Kuldeep Kumar,et al.  A sparse coding approach for the efficient representation and segmentation of white matter fibers , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[2]  Maxime Descoteaux,et al.  Robust clustering of massive tractography datasets , 2011, NeuroImage.

[3]  Maxime Descoteaux,et al.  Dipy, a library for the analysis of diffusion MRI data , 2014, Front. Neuroinform..

[4]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[5]  Daniel Rueckert,et al.  The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction , 2017, NeuroImage.

[6]  Carl-Fredrik Westin,et al.  Estimating Diffusion Propagator and Its Moments Using Directional Radial Basis Functions , 2015, IEEE Transactions on Medical Imaging.

[7]  Guy B. Williams,et al.  QuickBundles, a Method for Tractography Simplification , 2012, Front. Neurosci..

[8]  Moo K. Chung,et al.  Efficient parametric encoding scheme for white matter fiber bundles , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[9]  Weidong Cai,et al.  Suprathreshold fiber cluster statistics: Leveraging white matter geometry to enhance tractography statistical analysis , 2018, NeuroImage.

[10]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[11]  Bruce Fischl,et al.  AnatomiCuts: Hierarchical clustering of tractography streamlines based on anatomical similarity , 2016, NeuroImage.

[12]  Rachid Deriche,et al.  Unsupervised automatic white matter fiber clustering using a Gaussian mixture model , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[13]  Yogesh Rathi,et al.  Harmonizing Diffusion MRI Data Across Magnetic Field Strengths , 2018, MICCAI.

[14]  Chia-Ter Chao,et al.  Dipstick proteinuria level is significantly associated with pre-morbid and in-hospital functional status among hospitalized older adults: a preliminary study , 2017, Scientific Reports.

[15]  Yogesh Rathi,et al.  An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan , 2018, NeuroImage.

[16]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[17]  Isabelle Bloch,et al.  Progressive and Efficient Multi-Resolution Representations for Brain Tractograms , 2018, VCBM@MICCAI.

[18]  Maxime Descoteaux,et al.  Visualization, Interaction and Tractometry: Dealing with Millions of Streamlines from Diffusion MRI Tractography , 2017, Front. Neuroinform..

[19]  S. Rousseau,et al.  QFib: Fast and Efficient Brain Tractogram Compression , 2020, Neuroinformatics.

[20]  Reinhard Klein,et al.  Eurographics Symposium on Point-based Graphics (2006) Octree-based Point-cloud Compression , 2022 .

[21]  Pietro Gori,et al.  Comparison of distances for supervised segmentation of white matter tractography , 2017, 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI).

[22]  Hayit Greenspan,et al.  The fiber-density-coreset for redundancy reduction in huge fiber-sets , 2017, NeuroImage.

[23]  Borjan Gagoski,et al.  Diffusion Propagator Estimation from Sparse Measurements in a Tractography Framework , 2013, MICCAI.

[24]  Hayit Greenspan,et al.  Sparse Representation for White Matter Fiber Compression and Calculation of Inter-Fiber Similarity , 2016, MICCAI 2016.

[25]  Maxime Descoteaux,et al.  A new compression format for fiber tracking datasets , 2015, NeuroImage.

[26]  Franco Pestilli,et al.  Multidimensional encoding of brain connectomes , 2017, Scientific Reports.

[27]  Pietro Gori,et al.  Parsimonious Approximation of Streamline Trajectories in White Matter Fiber Bundles , 2016, IEEE Transactions on Medical Imaging.

[28]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[29]  Olivier Devillers,et al.  Geometric compression for interactive transmission , 2000 .

[30]  Remi Arnaud,et al.  glTF: Designing an Open-Standard Runtime Asset Format , 2014 .

[31]  Peter Lindstrom,et al.  Fixed-Rate Compressed Floating-Point Arrays , 2014, IEEE Transactions on Visualization and Computer Graphics.