Parallel Processing in the Corticogeniculate Pathway of the Macaque Monkey

[1]  G Mann,et al.  ON THE THALAMUS * , 1905, British medical journal.

[2]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[3]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[4]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[5]  A. Harvey Characteristics of corticothalamic neurons in area 17 of the cat , 1978, Neuroscience Letters.

[6]  P. Schiller,et al.  Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. , 1978, Journal of neurophysiology.

[7]  J Bullier,et al.  Ordinal position and afferent input of neurons in monkey striate cortex , 1980, The Journal of comparative neurology.

[8]  T. Tsumoto,et al.  Three groups of cortico‐geniculate neurons and their distribution in binocular and monocular segments of cat striate cortex , 1980, The Journal of comparative neurology.

[9]  H. Swadlow,et al.  Efferent systems of the rabbit visual cortex: Laminar distribution of the cells of origin, axonal conduction velocities, and identification of axonal branches , 1981, The Journal of comparative neurology.

[10]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[11]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[12]  Jonathan Stone,et al.  Parallel Processing in the Visual System , 1983, Perspectives in Vision Research.

[13]  Rockefeller S.L. Young,et al.  Parallel Processing in the Visual System , 1984 .

[14]  Vivien A. Casagrande,et al.  W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago crassicaudatus) , 1986, Brain Research.

[15]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[16]  H. Swadlow,et al.  Corticogeniculate neurons, corticotectal neurons, and suspected interneurons in visual cortex of awake rabbits: receptive-field properties, axonal properties, and effects of EEG arousal. , 1987, Journal of neurophysiology.

[17]  P. C. Murphy,et al.  Corticofugal feedback influences the generation of length tuning in the visual pathway , 1987, Nature.

[18]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[19]  M. Hawken,et al.  Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  V. Casagrande,et al.  Contrast-sensitivity functions of W-, X-, and Y-like relay cells in the lateral geniculate nucleus of bush baby, Galago crassicaudatus. , 1988, Journal of neurophysiology.

[21]  Nikos K Logothetis,et al.  The color-opponent and broad-band channels of the primate visual system , 1990, Trends in Neurosciences.

[22]  D. Raczkowski,et al.  Sublaminar organization within layer VI of the striate cortex in Galago , 1990, The Journal of comparative neurology.

[23]  R. Shapley Parallel Retinocortical Channels: X and Y and P and M , 1992 .

[24]  Julie R. Brannan,et al.  Applications of parallel processing in vision , 1992 .

[25]  B. Knight,et al.  Contrast gain control in the primate retina: P cells are not X-like, some M cells are , 1992, Visual Neuroscience.

[26]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[27]  D. Fitzpatrick,et al.  The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex , 1994, Visual Neuroscience.

[28]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[29]  A. Sillito,et al.  Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  E. Callaway,et al.  Contributions of individual layer 6 pyramidal neurons to local circuitry in macaque primary visual cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  D. Fitzpatrick,et al.  Specificity in the axonal connections of layer VI neurons in tree shrew striate cortex: evidence for distinct granular and supragranular systems , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  R. Shapley,et al.  Temporal-frequency selectivity in monkey visual cortex , 1996, Visual Neuroscience.

[33]  F. Wörgötter,et al.  Corticofugal feedback improves the timing of retino‐geniculate signal transmission , 1996, Neuroreport.

[34]  S. Sherman,et al.  Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: A comparison with corticogeniculate terminals , 1997, The Journal of comparative neurology.

[35]  S. Sherman,et al.  Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Goodchild,et al.  Segregation of receptive field properties in the lateral geniculate nucleus of a New-World monkey, the marmoset Callithrix jacchus. , 1998, Journal of neurophysiology.

[37]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[38]  D. Contreras,et al.  Cortically-induced coherence of a thalamic-generated oscillation , 1999, Neuroscience.

[39]  Paul R. Martin,et al.  Temporal contrast sensitivity in the lateral geniculate nucleus of a New World monkey, the marmoset Callithrix jacchus , 1999, The Journal of physiology.

[40]  M. Nicolelis,et al.  Immediate thalamic sensory plasticity depends on corticothalamic feedback. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  John H. R. Maunsell,et al.  Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys , 1999, Visual Neuroscience.

[42]  D. Pollen,et al.  Striate cortex increases contrast gain of macaque LGN neurons , 2000, Visual Neuroscience.

[43]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[44]  N Suga,et al.  Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bats. , 2000, Journal of neurophysiology.

[45]  G A Orban,et al.  Attention-dependent suppression of metabolic activity in the early stages of the macaque visual system. , 2000, Cerebral cortex.

[46]  R C Reid,et al.  Visual physiology of the lateral geniculate nucleus in two species of New World monkey: Saimiri sciureus and Aotus trivirgatis , 2000, The Journal of physiology.

[47]  A. Destexhe,et al.  Cortical Feedback Controls the Frequency and Synchrony of Oscillations in the Visual Thalamus , 2000, The Journal of Neuroscience.

[48]  D. McCormick,et al.  Corticothalamic Inputs Control the Pattern of Activity Generated in Thalamocortical Networks , 2000, The Journal of Neuroscience.

[49]  D. Dacey Parallel pathways for spectral coding in primate retina. , 2000, Annual review of neuroscience.

[50]  Visual response augmentation in cat (and macaque) LGN: potentiation by corticofugally mediated gain control in the temporal domain , 2000, The European journal of neuroscience.

[51]  Alain Destexhe,et al.  Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex , 2000, Journal of Physiology-Paris.

[52]  M. Nicolelis,et al.  Role of cortical feedback in the receptive field structure and nonlinear response properties of somatosensory thalamic neurons , 2001, Experimental Brain Research.

[53]  E M Callaway,et al.  Layer-Specific Input to Distinct Cell Types in Layer 6 of Monkey Primary Visual Cortex , 2001, The Journal of Neuroscience.

[54]  E Kaplan,et al.  The dynamics of primate retinal ganglion cells. , 2001, Progress in brain research.

[55]  M. Steriade Impact of network activities on neuronal properties in corticothalamic systems. , 2001, Journal of neurophysiology.

[56]  S. Solomon,et al.  Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus , 2001, The Journal of physiology.

[57]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[58]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .

[59]  Vivien A Casagrande,et al.  Organization of the feedback pathway from striate cortex (V1) to the lateral geniculate nucleus (LGN) in the owl monkey (Aotus trivirgatus) , 2002, The Journal of comparative neurology.

[60]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[61]  Paul R. Martin,et al.  Extraclassical Receptive Field Properties of Parvocellular, Magnocellular, and Koniocellular Cells in the Primate Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[62]  Amanda Parker,et al.  Feedback from V1 and inhibition from beyond the classical receptive field modulates the responses of neurons in the primate lateral geniculate nucleus , 2002, Visual Neuroscience.

[63]  L. Martinez,et al.  Completing the Corticofugal Loop: A Visual Role for the Corticogeniculate Type 1 Metabotropic Glutamate Receptor , 2002, The Journal of Neuroscience.

[64]  Nobuo Suga,et al.  Multiparametric corticofugal modulation and plasticity in the auditory system , 2003, Nature Reviews Neuroscience.

[65]  Henry J. Alitto,et al.  Corticothalamic feedback and sensory processing , 2003, Current Opinion in Neurobiology.

[66]  R. W. Güillery A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[67]  Naoya Yokoyama,et al.  Neural Coding of Color , 2004 .

[68]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[69]  L. Lagae,et al.  Corticofugal feedback influences the responses of geniculate neurons to moving stimuli , 2004, Experimental Brain Research.

[70]  Simona Temereanca,et al.  Functional Topography of Corticothalamic Feedback Enhances Thalamic Spatial Response Tuning in the Somatosensory Whisker/Barrel System , 2004, Neuron.

[71]  V. Casagrande,et al.  The Afferent , Intrinsic , and Efferent Connections of Primary Visual Cortex in Primates , 2005 .

[72]  E. Callaway Structure and function of parallel pathways in the primate early visual system , 2005, The Journal of physiology.

[73]  M. Steriade Sleep, epilepsy and thalamic reticular inhibitory neurons , 2005, Trends in Neurosciences.

[74]  A. Destexhe,et al.  Synaptic background activity controls spike transfer from thalamus to cortex , 2005, Nature Neuroscience.

[75]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[76]  M. Carandini,et al.  The Suppressive Field of Neurons in Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[77]  Moshe Gur,et al.  Cerebral Cortex doi:10.1093/cercor/bhi003 Orientation and Direction Selectivity of Neurons in V1 of Alert Monkeys: Functional Relationships and Laminar Distributions , 2022 .

[78]  Farran Briggs,et al.  Temporal properties of feedforward and feedback pathways between the thalamus and visual cortex in the ferret. , 2005, Thalamus & related systems.

[79]  R. Guillery,et al.  Exploring the Thalamus and Its Role in Cortical Function , 2005 .

[80]  L. Monconduit,et al.  Corticofugal Output from the Primary Somatosensory Cortex Selectively Modulates Innocuous and Noxious Inputs in the Rat Spinothalamic System , 2006, The Journal of Neuroscience.

[81]  A. Sillito,et al.  Functional alignment of feedback effects from visual cortex to thalamus , 2006, Nature Neuroscience.

[82]  A. Sillito,et al.  Looking back: corticothalamic feedback and early visual processing , 2006, Trends in Neurosciences.

[83]  G D Field,et al.  Information processing in the primate retina: circuitry and coding. , 2007, Annual review of neuroscience.

[84]  L. Palmer,et al.  Suppression at high spatial frequencies in the lateral geniculate nucleus of the cat. , 2007, Journal of neurophysiology.

[85]  Nobuo Suga,et al.  Role of corticofugal feedback in hearing , 2008, Journal of Comparative Physiology A.

[86]  A. Sillito,et al.  Corticothalamic feedback enhances stimulus response precision in the visual system , 2007, Proceedings of the National Academy of Sciences.

[87]  P. Lennie,et al.  The machinery of colour vision , 2007, Nature Reviews Neuroscience.

[88]  Farran Briggs,et al.  A Fast, Reciprocal Pathway between the Lateral Geniculate Nucleus and Visual Cortex in the Macaque Monkey , 2007, The Journal of Neuroscience.

[89]  Pavlos Rigas,et al.  Thalamocortical Up States: Differential Effects of Intrinsic and Extrinsic Cortical Inputs on Persistent Activity , 2007, The Journal of Neuroscience.

[90]  Ford F. Ebner,et al.  Cortical Modulation of Spatial and Angular Tuning Maps in the Rat Thalamus , 2007, The Journal of Neuroscience.

[91]  F. Luo,et al.  Corticofugal influences on thalamic neurons during nociceptive transmission in awake rats , 2007, Synapse.

[92]  Jun Yan,et al.  Modulation of the Receptive Fields of Midbrain Neurons Elicited by Thalamic Electrical Stimulation through Corticofugal Feedback , 2007, The Journal of Neuroscience.

[93]  Martin Deschênes,et al.  Vibrissal Responses of Thalamic Cells That Project to the Septal Columns of the Barrel Cortex and to the Second Somatosensory Area , 2008, The Journal of Neuroscience.

[94]  R. Wurtz,et al.  Guarding the gateway to cortex: attention in visual thalamus , 2008, Nature.

[95]  W. Usrey,et al.  Emerging views of corticothalamic function , 2008, Current Opinion in Neurobiology.

[96]  W. Martin Usrey,et al.  Origin and Dynamics of Extraclassical Suppression in the Lateral Geniculate Nucleus of the Macaque Monkey , 2008, Neuron.

[97]  Jun Yan,et al.  Corticothalamic feedback for sound-specific plasticity of auditory thalamic neurons elicited by tones paired with basal forebrain stimulation. , 2008, Cerebral cortex.

[98]  P. C. Murphy,et al.  Spatial summation in lateral geniculate nucleus and visual cortex , 2000, Experimental Brain Research.

[99]  A. Derrington,et al.  Feedback from V 1 and inhibition from beyond the classical receptive field modulates the responses of neurons in the primate lateral geniculate nucleus , .